Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Minh Tuệ
Xem chi tiết
Quang Ánh
Xem chi tiết
Võ Đông Anh Tuấn
30 tháng 5 2016 lúc 20:10

x2−12=y2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
Lại có : x,y nguyên dương.

⇒x>y" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> và x phải là số lẽ.
Từ đó đặt  (k nguyên dương)
Ta có biểu thức tương đương : 
Để ý rằng: y là 1 số nguyên tố nên  sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là {1 ; y ; y^2}
Từ (*) dễ thấy 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2

Thắng Nguyễn
30 tháng 5 2016 lúc 20:12

copy bài như thế này mà tự xưng là chiến thắng sao ko bít nhục à VICTOR_Nobita Kun

tinavy
Xem chi tiết
Nguyen Thi Mong Loan
Xem chi tiết
Trà My
25 tháng 12 2016 lúc 16:05

Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên

Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm

TH1: (2x-3)2=0 và |y-2|=1

\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)

Ta không xét đến |y-2|=1 nữa!

TH2: (2x-3)2=1 và |y-2|=0

\(\left(2x-3\right)^2=1\Rightarrow\orbr{\begin{cases}2x-3=-1\\2x-3=1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-2\\2x=4\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)\(\left|y-2\right|=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)

Vậy có 2 cặp x;y thỏa mãn là .........................

ngonhuminh
25 tháng 12 2016 lúc 16:14

\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)

\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)

Với x=1,2=>có y=2

với 1,3 không có x thỏa mãn

KL:

(xy)=(1,2); (2,2)

Nguyễn Trà My
26 tháng 12 2016 lúc 16:39

nhầm nhé 2x=2 <=> x=1

Lê Trọng Chương
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
Trí Tiên亗
3 tháng 10 2020 lúc 19:05

Với y nguyên thì \(2y^2-1\ne0\), Từ phương trình đề cho suy ra 

\(x=\frac{y^4}{2y^2-1}\). Để x nguyên thì :

\(y^4⋮2y^2-1\)

\(\Leftrightarrow8y^4⋮2y^2-1\)

\(\Leftrightarrow2.\left(4y^4-1\right)+2⋮2y^2-1\)

\(\Leftrightarrow2\left(2y^2-1\right)\left(2y^2+1\right)+2⋮2y^2-1\)

\(\Leftrightarrow2y^2-1\inƯ\left(2\right)=\left\{-1,1,-2,2\right\}\)

\(\Leftrightarrow2y^2\in\left\{0,2,-1,3\right\}\)

\(\Leftrightarrow y\in\left\{0,1,-1\right\}\) ( Do y nguyên )

Với \(y=0\Rightarrow x=0\)

Với \(y=1\Rightarrow x=1\)

Với \(y=-1\Rightarrow x=1\)

Khách vãng lai đã xóa
Nguyễn Thu Thủy
Xem chi tiết
Nguyễn Thu Thủy
29 tháng 3 2020 lúc 10:02

please

Khách vãng lai đã xóa
Fug Buik__( Team ⒽⒺⓋ )
29 tháng 3 2020 lúc 10:15

Toán lp mấy mà khó zậy bn?? xl mk hông bt lm

Khách vãng lai đã xóa
✰๖ۣۜŠɦαɗøω✰
29 tháng 3 2020 lúc 10:35

Ta có : x+ x + 3 = y2 

<=> 4.x2 + 4.x + 12 = 4.y2 

<=> ( 2.x + 1 ) 2 - 4.y2 = -11

<=> ( 2.x + 2.y + 1 ) . ( 2.x - 2.y + 1 ) = 11

Do x ,y nguyên nên 2 .x  + 2.y + 1 và 2.x - 2.y+ 1 là các số nguyên .Do đó xảy ra các trường hợp sau : 

TH1 : 2.x + 2.y + 1 = 1 và 2.x - 2.y + 1 = -11 . Tìm được x = -3 và y = 3

TH2 : 2.x + 2.y + 1 = -1 và 2.x - 2.y + 1 = 11 . Tìm được x = 2 và y = -3

TH3 : 2.x + 2.y + 1= 11 và 2.x - 2.y = -1 .Tìm được x = 2 và y = 3 

TH4 : 2.x + 2.y   + 1 = -11 và 2.x - 2.y = 1 .Tìm được x = -3 và y= -3

Vậy các cặp số nguyên ( x ; y ) thỏa mãn là : ( -3 ; 3 ) ; ( 2 ; -3 ) ; ( 2 ; 3 ) ; ( -3 ; -3 ) 

Khách vãng lai đã xóa
Lê Trọng Chương
Xem chi tiết
Đinh Đức Hùng
15 tháng 9 2017 lúc 16:46

Xét \(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\)(1)

Ta có \(\left|y+1\right|\ge0\Leftrightarrow\left|y+1\right|+3\ge3\Rightarrow\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\) nên \(VP\le4\)(2)

Từ (1) ; (2) \(\Rightarrow VP\le4\le VT\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\\\left|y+1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le5\\y=-1\end{cases}}}\)

Lê Trọng Chương
Xem chi tiết