Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà thị ngọc mai
Xem chi tiết
Aphrodite
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2019 lúc 10:37

Chọn A

Với số tự nhiên n ≥ 1, ta có:

Suy ra:

Cộng tương ứng hai vế các đẳng thức trên ta có  với mọi số tự nhiên n1

Để 

Ta kiểm tra với các giá trị  k   ∈   ℕ   từ bé đến lớn

 

Vậy số nguyên n > 1 nhỏ nhất là n = 41( ứng với k = 3).

Trần Minh Hưng
Xem chi tiết
Lightning Farron
27 tháng 10 2016 lúc 12:04

Giả sử f(n) là số chính phương với mọi n nguyên dương

Đặt \(f\left(n\right)=n^3+On^2+Ln+M\)

Suy ra \(f\left(1\right)=1+O+L+M\);\(f\left(2\right)=8+4O+2L+M\);\(f\left(3\right)=27+9O+3L+M\);\(f\left(4\right)=64+16O+4L+O\) đều là số chính phương.

\(f\left(4\right)-f\left(2\right)\equiv2L\left(mod4\right)\)\(f\left(4\right)-f\left(2\right)\equiv0,1,-1\left(mod4\right)\)(do \(f\left(4\right),f\left(2\right)\)đều là số chính phương)

Do đó= \(2L\equiv0\left(mod4\right)\)

Suy ra \(2L+2\equiv2\left(mod4\right)\)

Mặt khác \(f\left(3\right)-f\left(1\right)\equiv2L+2\left(mod4\right)\)

=>Mâu thuẫn với điều giả sử (do \(f\left(3\right)-f\left(1\right)\equiv0,1,-1\left(mod4\right)\))

=>Đpcm

Vậy luôn tồn tại n nguyên dương sao cho \(f\left(n\right)=n^3+On^2+Ln+M\)không phải là số chính phương.

 

Tom Boy
Xem chi tiết
Tom Boy
Xem chi tiết
Tom Boy
Xem chi tiết
Tom Boy
Xem chi tiết
Tom Boy
Xem chi tiết
Đinh Đức Tài
20 tháng 9 2015 lúc 8:45

mik bit nè ! **** Đà

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2019 lúc 13:11