tìm ngiệm nguyên dương của pt 9x-5=y(y-1)
tìm ngiệm nguyên dương của pt \(xyz=2\left(x+y+z\right)\)
Giả sử \(x\ge y\ge z>0\)
\(\Rightarrow2\left(x+y+z\right)\le6x\Rightarrow xyz\le6x\Rightarrow yz\le6\Rightarrow\left(y;z\right)=\left(3;2\right)=\left(1;1\right)=\left(3;1\right);\left(4;1\right)=\left(2;1\right)=\left(6;1\right)\) Vì \(y\ge z\)
Chị làm nốt ạ.
tìm ngiệm nguyên dương của pt :
5x-3y=2xy-11
5x-3y=2xy-11
10x-6y=4xy-22
(10x-4xy) +( 15-6y)=-7
2x(5-2y) +3(5-2y) =-7
(5-2y)(2x+3) =-7
Do x nguyên dương 2x+3 5 và là ước của 7 nên ta có:
*
Vậy nghiệm nguyên dương của phương trình là : (2;3)
Lời giải của mình như sau:
5x-3y=2xy-11
10x-6y=4xy-22
(10x-4xy) +( 15-6y)=-7
2x(5-2y) +3(5-2y) =-7
(5-2y)(2x+3) =-7
Vì x nguyên dương 2x+3 5 và là ước của 7
=> nghiệm nguyên dương của phương trình là : (2;3)
Vậy nghiệm nguyên dương của phương trình là : (2;3)
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho...hiển thị thêm
Câu trả lời hay nhất: x² - 4x +y - 6√(y) + 13 = 0
<=> (x^2 - 4x +4) + (√(y)^2 - 6√(y) + 9) = 0
<=> (x-2)^2 + (√(y) -3)^2 = 0
VT >=0 dấu = xảy ra <=> x = 2 ; y = 9
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
<=> ((xy²)² - 16xy³ + 64y²) + (4y^2 - 4xy + x^2) = 0
<=> (xy² - 8y)^2 + (2y - x)^2 = 0
VT >=0 => dấu = <=> xy² - 8y = 0 và 2y - x = 0
<=> y = 0 ; x = 0 hoặc x = 4 ; y = 2 hoặc x = -4 ;y = -2
c/
x² - x²y - y + 8x + 7 = 0
<=> x²(1-y) + 8x - y + 7 = 0
xét delta' = 4^2 - (1-y)(7-y) = 16 - 7 -y^2 + 8y = -(y^2 -8y + 16) +25 = 25 - (y-4)^2
để pt có nghiệm thì delta' >=0
<=> (y-4)^2 <=25
<=> -1<= y <=9
=> max y = 9
=> x = 3/2 hoặc x = -1/2
3/
x² - 6x + 1 =0. nhân cả 2 vế với x^(n-1) ta được
x^(n+1) - 6x^n + x^(n-1) = 0
với S(n) = x1ⁿ +x2ⁿ ta có:
S(n+1) - 6S(n) + S(n-1) = 0
<=> S(n+1) = 6S(n) - S(n-1)
với S(1) = 6
S(2) = 22
=> S(3) nguyên
=> S(4) nguyên
=> S(n) nguyên (do biểu thức truy hồi S(n+1) = 6S(n) - S(n-1))
ta có:
S(1) không chia hết cho 5
S(2) ..............................
=> S(3) = 6S(2) - S(1) = 6.(22 -1) = 6.21 không chia hết cho 5
S(n) và S(n-1) ko chia hết cho 5 =>
S(n+1) = S(n) + S(n-1) ko chia hết cho 5
tìm ngiệm nguyên dương của pt :
5x-3y=2xy-11
tìm ngiệm nguyên dương của phương trình : 1/x + 1/y + 1/z = 2
Nếu \(x\ge3,y\ge3,z\ge3\)thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1< 2\)
Do vậy trong ba số x,y,z tồn tại ít nhất một số nhỏ hơn 3
Gọi \(x\le y\) , \(x\le z\) thì x < 3 => x = 1 hoặc x = 2
Nếu x = 1 thì y = 2 và z = 2
Nếu x = 2 thì y = 2 và z = 2 không thỏa
Vậy (x,y,z) = (1;2;2) và các hoán vị
TÌm ngiệm nguyên của pt :
\(2^x-3^y=1\)
tìm ngiệm nguyên của phương trình
3x-2y=1
18x-30y=59
7(x-1)+3y=2xy
12x+19y=94
tìm ngiệm nguyên dương của pt
12x+19y=94
13x=3y=50
21x+31y=280
\(\frac{4}{x}+\frac{2}{y}=1\)
tính khoảng cách từ gốc tọa độ O đến đg thẳng 8x+6y=3
Tìm ngiệm nguyên dương của phương trình: x+y+z=xyz
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
cái thằng lợn này , k bấm đúng à ((:
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...