Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Hoàng Uyên Lâm
Xem chi tiết
Nope...
10 tháng 8 2019 lúc 15:52

Ta có : \(\hept{\begin{cases}\frac{a}{a'}+\frac{b'}{b}=1\Rightarrow ab+a'b'=a'b\Rightarrow abc+a'b'c=a'bc\left(1\right)\\\frac{b}{b'}=\frac{c'}{c}\Rightarrow bc+b'c'=b'c\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\end{cases}}\)

Từ (1) và (2) ta có đpcm

zoombie hahaha
Xem chi tiết
zoombie hahaha
Xem chi tiết
Hoàng Quốc Huy
Xem chi tiết
Trịnh Lan Anh
29 tháng 12 2016 lúc 15:23

Ta có:

\(\frac{a}{a'}+\frac{b'}{b}=1\: \Rightarrow ab+a'b=a'b'\left(1\right)\)

\(\frac{b}{b'}+\frac{c'}{c}=1\:\Rightarrow bc+b'c'=b'c\left(2\right)\)

Nhân 2 vế của (1)với c ta được:

abc+a'bc=a'b'c (3)

Nhân 2 vế của (2) với a' ta được:

a'bc+a'b'c'=a'b'c (4)

Từ (3) +(4)=>đpcm

Thụy Lâm
18 tháng 6 2019 lúc 11:49

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

nguyễn huy hoàng
23 tháng 7 2019 lúc 21:54
Bùi Sỹ Bình
Xem chi tiết
Mũ Rơm
Xem chi tiết
nguyễn quốc tú
Xem chi tiết
Trần Anh Đức
Xem chi tiết
Trần Anh Đức
18 tháng 8 2017 lúc 17:20

giup voi nha

Lê Anh Tú
18 tháng 8 2017 lúc 17:33

\(\frac{a}{a'}+\frac{b}{b'}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c=a'bc\)(1)(c#0)

\(\frac{b}{b'}+\frac{c'}{c}=1\Leftrightarrow bc++b'c'=b'c\)\(\Leftrightarrow\)\(a'bc+a'b'c=a'b'c\)(2)(a'#0)

(1)+(2)=>đcpm

Trần Anh Đức
19 tháng 8 2017 lúc 16:05

cam on

đàm anh quân lê
Xem chi tiết
Phan Thị Ngọc Minh
4 tháng 12 2018 lúc 22:07

\(\frac{a}{a'}\)+\(\frac{b'}{b}\)=1 =>\(\frac{a}{a'}\)*\(\frac{b}{b'}\)+\(\frac{b'}{b}\)*\(\frac{b}{b'}\)=> \(\frac{ab}{a'b'}\)+1=\(\frac{b'}{b}\)=1-\(\frac{c'}{c}\)

=> \(\frac{ab}{a'b'}=\frac{-c}{c'}=>abc=-a'b'c'=>abc+a'b'c'=0\)

nhớ k cho mik nha bạn và cho mik hỏi mik có thể kết bạn với bạn ko?????

Phan Thị Ngọc Minh
4 tháng 12 2018 lúc 22:08

cho mik xin lỗi mik đánh nhầm : Nhớ k cho mik nha 

Nguyệt
4 tháng 12 2018 lúc 22:30

\(\frac{a}{a'}+\frac{b'}{b}=\frac{b}{b'}+\frac{c'}{c}=1\)(ĐK:a',b,b',c khác 0)

\(\Leftrightarrow\frac{a}{a'}+\frac{b'}{b}-\frac{b}{b'}-\frac{c'}{c}=0\Rightarrow\frac{abb'c}{a'bb'c}+\frac{ab'b'c}{a'bb'c}-\frac{ab'bc}{a'bb'c}-\frac{abb'c}{abb'c}=0\)

\(\left(\frac{abb'c}{a'bb'c}-\frac{abb'c}{abb'c}\right)+\left(\frac{ab'b'c}{a'bb'c}-\frac{ab'bc}{abb'c}\right)=0\Rightarrow0+\left(\frac{ab'b'c}{a'bb'c}-\frac{ab'bc}{abb'c}\right)=0\)

\(\Rightarrow\left(\frac{ab'b'c}{a'bb'c}-\frac{ab'bc}{a'bb'c}\right)=0\Rightarrow ab'b'c=ab'bc\Rightarrow b=b'\)

\(\frac{a}{a'}+\frac{b'}{b}=1\Rightarrow\frac{a}{a'}+1=1\Rightarrow\frac{a}{a'}=0\Rightarrow a=0\)

\(\frac{c'}{c}+\frac{b}{b'}=1\Rightarrow\frac{c'}{c}+1=1\Rightarrow\frac{c'}{c}=1\Rightarrow c'=0\)

=> \(\hept{\begin{cases}abc=0\\a'b'c=0\end{cases}\Rightarrow abc+a'b'c=0}\)

p/s:ko chắc  lắm, cách tự chế :>