Tìm các cặp số nguyên (x,y) thỏa mãn \(\sqrt{x^2+4x-7}+y=2x+7\)
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Tìm các cặp số nguyên dương x,y thỏa mãn (2x-1).(y-7)=22
\(\left(2x-1\right)\left(y-7\right)=22\)
\(\Rightarrow\left(2x-1\right);\left(y-7\right)\in\left\{1;2;11;22\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(\dfrac{3}{2};18\right);\left(6;9\right);\left(\dfrac{23}{2};8\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(6;9\right)\right\}\left(x;y\inℤ^+\right)\)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm các cặp số nguyên x, y thỏa mãn đẳng thức sau:
a) 2x2 + 3xy - 2y2 = 7
b) 4x3 - y2 - 4y - 11 = 0
Tìm các cặp số nguyên x, y thỏa mãn đẳng thức sau:
a) 2x2 + 3xy - 2y2 = 7
b) 4x3 - y2 - 4y - 11 = 0
Tìm các cặp số nguyên x, y thỏa mãn đẳng thức sau:
a) 2x2 + 3xy - 2y2 = 7
b) 4x3 - y2 - 4y - 11 = 0
Tìm các cặp số nguyên x, y thỏa mãn đẳng thức sau:
a) 2x2 + 3xy - 2y2 = 7
b) 4x3 - y2 - 4y - 11 = 0
Tìm các cặp số nguyên x và y thỏa mãn pt \(\sqrt{x^2-2x+13}\)=y
ĐK : \(x;y\in Z;y\ge0\)
\(\sqrt{x^2-2x+13}=y\)
\(\Leftrightarrow x^2-2x+13=y^2\)
\(\Leftrightarrow\left(x^2-2x+1\right)+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=-12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=-12\) đến đây lm tiếp
Làm tiếp hộ mk !!!! xem mk làm có đúng ko ><
Tìm cặp số nguyên (x;y ) thỏa mãn ( 2x+1)(y-1) = - 7