Tính tổng: S=1.3+2.4+3.5+4.6+...+99.101+100.102
Giúp mik vs ạ, mik đag cần gấp, cảm ơn.
Bài tập: Tính tổng
\(\text{A = 1.3 + 3.5 + 5.7 + …+ 97.99 + 99.101.}\)
\(B=1.3+2.4+3.5+4.6+...+99.101+100.102\)
\(C=1.3.5+3.5.7+...+95.97.99\)
Giúp mik vs ạ. Giải chi tiết ra mik sẽ tik cho. Cho mik cảm ơn trước!!!
A=1.3+3.5+5.7+...+99.101
6A=1.3(5+1)+3.5(7-1)+5.7(9-3)+7.9(11-5)+...+99.101(103-97)
= 1.3.5+1.3+3.5.7-3.5+5.7.9-3.5.7+7.9.11-5.7.9+...+99.101.103-97.99.101
=1.3+99.101.103
=> A= \(\frac{1.3+99.101.103}{6}\)
Bài tập: Tính tổng
A = 1.3 + 3.5 + 5.7 + …+ 97.99 + 99.101.
B=1.3+2.4+3.5+4.6+...+99.101+100.102
C=1.3.5+3.5.7+...+95.97.99
Giúp mik vs ạ. Giải chi tiết ra mik sẽ tik cho. Cho mik cảm ơn trước!!!
a. Ta có: \(A=1\cdot3+3\cdot5+5\cdot7+...+99\cdot101\)
\(\Rightarrow A=1\left(1+2\right)+3\cdot\left(3+2\right)+...+99\left(99+2\right)\)
\(\Rightarrow A=\left(1^2+3^2+5^2+...+97^2+99^2\right)+2\left(1+3+5+...+97+99\right)\)
Đặt \(M=1^2+3^2+5^2+99^2\)
\(\Rightarrow M=\left(1^2+2^2+3^2+...+100^2\right)-2^2\left(1^2+2^2+3^2+50^2\right)\)
Tính dãy tổng quát \(N=1^2+2^2+3^2+...+n^2\)
\(\Rightarrow N=1\left(0+1\right)+2\left(1+1\right)+3\left(2+1\right)+...+n[\left(n-1\right)+1]\)
\(\Rightarrow N=\left[1\cdot2+2\cdot3+...+\left(n-1\right)n\right]+\left(1+2+3+...+n\right)\)
\(\Rightarrow N=n\left(n+1\right)\cdot\left[\left(n-1\right):3+1:2\right]=n\left(n+1\right)\cdot\left(2n+1\right):6\)
Áp dụng vào M ta được:
\(M=100\cdot101\cdot201:6-4\cdot50\cdot51\cdot101:6=166650\)
\(\Rightarrow A=166650+2\left(1+99\right)\cdot50:2\)
\(\Rightarrow A=166650+5000=171650\)
Vậy \(A=171650\)
Tính tổng: S=1.3+2.4+3.5+4.6+...+99.101+100.102
S =2706800 ban nhe
k cho mình đi mình viết công thức cho
Bạn giải chỉ tiết ra đi. Nêu bạn giải chi tiết mình tích đúng cho
Tính tổng sau S= 1.3+2.4+3.5+4.6+....+99.101+100.102
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng vào bài toán ta được :
\(S=\frac{100.101.102}{3}+\frac{100.101}{2}\)
= 343400 + 5050
= 348450
Ờ được.Thank you bn Đinh Đức Hùng nha!!!
Edogawa Conan đăng nhìu nhìu lên cho tau đỡ mỏi tay cái!
1.3+2.4+3.5+4.6+.....+99.101+100.102. tính tổng trên
Tính Tổng
a) 2/1.3+2/3.5+2/5.7.... 2/99.101
b) 5/1.3+5/3.5+5/5.7+...+5/99.101
c) 4/2.4+4/4.6+4/6.8+...+4/2008.2010
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
1.3+2.4+3.5+4.6+....+99.101=?
Cách khác của bài 1:
B=1.3+2.4+3.5+...+97.99+98.100B=1.3+2.4+3.5+...+97.99+98.100
B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)
B=1.2+1+2.3+2+....+97.98+97+98.99+98B=1.2+1+2.3+2+....+97.98+97+98.99+98
B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)
B=98.99.1003+98.992B=98.99.1003+98.992
B=323400+4851=328251B=323400+4851=328251
1.3+2.4+3.5+...+98.100=22−1+32−1+...+992−1=12+22+32+...+992−99=99.100.1996−99=3282511.3+2.4+3.5+...+98.100=22−1+32−1+...+992−1=12+22+32+...+992−99=99.100.1996−99=328251
Bài 2: A=1.2.3+2.3.4+...+97.98.99<=>4A=1.2.3.4+2.3.4.4+...+97.98.99.4=1.2.3.(4−0)+2.3.4.(5−1)+...+97.98.99.(100−96)A=1.2.3+2.3.4+...+97.98.99<=>4A=1.2.3.4+2.3.4.4+...+97.98.99.4=1.2.3.(4−0)+2.3.4.(5−1)+...+97.98.99.(100−96)
1.2.3.(4−0)+2.3.4.(5−1)+...+97.98.99.(100−96)=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+...+97.98.99.100−96.96.98.99=97.98.99.1001.2.3.(4−0)+2.3.4.(5−1)+...+97.98.99.(100−96)=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+...+97.98.99.100−96.96.98.99=97.98.99.100
Suy ra A=97.98.99.1004=23527350A=97.98.99.1004=23527350
1.3+2.4+3.5+4.6+....+99.101
1.3+2.4+3.5+...+99.101
=1.(2+1)+2.(3+1)+3.(4+1)+...+99.(100+1)
=1.2+1+2.3+2+3.4+3+...+99.100+99
=(1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)
Đặt A=1.2+2.3+...+99.100
=>3A=1.2.3+2.3.3+...+99.100.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=>3A=99.100.101=999900=>A=333300
Đặt B=1+2+3+...+99
Số số hạng của B là (99-1).1+1=99
=>(99+1).99:2=4950
Mà lại có:1.3+2.4+3.5+...+99.101=A+B=333300+4950=338250
Bài tập: Tính tổng
a) A = 1.2+2.3+3.4+...+98.99
b) B = 1.3+3.5+5.7+...+99.101
c) S = 1.4+4.7+7.10+...+2017.2020
d) E= 2.4+4.6+6.8+...+98.100
e) S= 1.2.3+2.3.4+3.4.5+...+98.99.100
f) S= 1.2.3.4+2.3.4.5+3.4.5.6+...+19.20.21.22
a/
3A=1.2.3+2.3.3+3.4.3+...+98.99.3=
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=
=98.99.100=> A=98.33.100
b
6B=1.3.6+3.5.6+5.7.6+...+99.101.6=
=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=
=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=
=1.3+99.101.103=> (3+99.101.103):6
c/
9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=
=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=
=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=
=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9
Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k
Số k được tính theo quy luật \(k=\left(n+1\right)xd\)
Trong đó: n: số thừa số của 1 số hạng
d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng
Chúc em học tốt