Cho a thuộc Z, chứng minh a^3-19a chia hết cho 6
a,Tìm x thuộc Z để: 8-x chia hết cho x-1
b,Cho a,b thuộc Z,chứng minh rằng nếu 3a+7b chia hết cho 4 thì 19a-b chia hết cho 4
b, Có : 3a+7b chia hết cho 4
Mà 16a và 8b đều chia hết cho 4
=> 3a+7b+16a-8b chia hết cho 4
=> 19a-b chia hết cho 4
=> ĐPCM
Tk mk nha
Cho 19a+5b chia hết cho 11 (a,b thuộc N).Chứng minh 10a+9b chia hết cho 11
\(19a+5b+8.\left(10a+9b\right)=19a+5b+80a+72b=99a+77b⋮11\)
Mà \(19a+5b⋮11\Rightarrow8\left(10a+9b\right)⋮11\Rightarrow10a+9b⋮11\) (vì 8 và 11 là 2 số nguyên tố cùng nhau)
Cho a+5b chia hết cho 23 (a,b thuộc N). Chứng minh 19a+3b chia hết cho 23
\(4\left(a+5b\right)+\left(19a+3b\right)=23a+23b⋮23\)
Mà \(a+5b⋮23\Rightarrow19a+3b⋮23\)
A= (a3-a) chia hết cho 6 với mọi a thuộc N
B=(a3+5a) chia hết cho 6 với mọi a thuộc N
C=(a3+11a) chia hết cho 6 với mọi a thuộc N
D=(a3-19a) chia hết cho 6 với mọi a thuộc N
GIÚP MÌNH NHA
Cho a,b không chia hết cho 3(a,b thuộc Z).Chứng minh rằng a6-b6chia hết cho 9
cho 2 tập hợp A= {x thuộc Z sao cho x chia hết cho 2 và 3} và B= {x thuộc Z sao cho x chia hết cho 6} chứng minh rằng A=B
Chứng minh rằng:
a,a2017-a2015 chia hết cho 6 (a thuộc Z)
b,a3+b3+c3 chia hết cho 6 => a+b+c chia hết cho 6 (a,b thuộc Z)
c,a3b-ab3 chia hết cho 6 (a,b thuộc Z)
Chứng minh rằng
a) a3-a chia hết cho 6 với mọi a thuộc Z
b) ab.(a2-b2) chia hết cho 6 với mọi a,b thuộc Z
a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.
\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6
Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))
b) \(ab.\left(a^2-b^2\right)\)
Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6
Nếu a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...)
\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...) - 1 (2;3;4;5...) = 0
thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.
Chứng minh rằng
a) a3 - a chia hết cho 6 với mọi a thuộc Z
b) ab( a2 - b2 ) chia hết cho 6 với mọi a,b thuộc Z
a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)
\(=a^3b-ab+ab-ab^3\)
\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)
Vì \(a^3-a⋮6\)
và \(b-b^3=-\left(b^3-b\right)⋮6\)
nên \(ab\left(a^2-b^2\right)⋮6\)