Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hưng_11
Xem chi tiết
Nguyễn Tất Đạt
3 tháng 7 2018 lúc 21:03

A B C I E F

Gọi giao điểm của 2 tia EC và BI là F, nối FA.

Xét \(\Delta\)BAI và \(\Delta\)FCI có: AI=CI; ^BAI = ^FCI; ^AIB = ^CIF => \(\Delta\)BAI=\(\Delta\)FCI (g.c.g)

=> AB=CF (2 cạnh tương ứng).

Ta có: AB vuông AC; CE vuông AC => AB // CE hay AB // CF

Xét tứ giác ABCF: AB // CF; AB=CF => Tứ giác ABCF là hình bình hành

=> AF // BC. Mà EI vuông BC nên  EI vuông AF.

Xét \(\Delta\)AEF: AC vuông EF; EI vuông AF; điểm I thuộc AC => I là trực tâm \(\Delta\)AEF

=> FI vuông AE. Lại có: Tứ giác ABCF là hình bình hành;  I là trung điểm đường chéo AC

=> 3 điểm F;I;B thẳng hàng. Vậy khi FI vuông AE thì BI cũng vuông AE (đpcm).

Nguyễn Văn Hòa
Xem chi tiết
Nguyễn Mỹ Huyền
Xem chi tiết
Bùi Ngọc Tố Uyên
Xem chi tiết
Kiệt Nguyễn
27 tháng 2 2020 lúc 6:07

Gọi D là giao điểm của AB và IE

\(\Delta\)BDC có hai đường cao DI và CA cắt nhau tại I nên I là trực tâm của ​\(\Delta\)BDC

=> BI vuông góc CD (1)

Xét \(\Delta\)IAD và \(\Delta\)ICE có:

     ^IAD = ^ICE ( = 900)

     IA = IC

     ^AID = ^CIE (đối đỉnh)

Do đó ​\(\Delta\)IAD = \(\Delta\)ICE (g.c.g)

=> ID = IE (hai cạnh tương ứng)

Xét \(\Delta\)AIE và \(\Delta\)CID có:

     AI = CI (gt)

    ^AIE = ^CID (đối đỉnh)

    DI = EI (cmt)

Do đó \(\Delta\)AIE = \(\Delta\)CID (c.g.c)

=> ^IAE = ^ICD (hai góc tương ứng)

Mà hai góc này ở vị trí slt nên AE //CD (2)

​Từ (1) và (2) suy ra BI vuông góc AE (đpcm)

Khách vãng lai đã xóa
Nguyễn Tuyết Ngọc
Xem chi tiết
Minh Pham
27 tháng 12 2020 lúc 11:42

cc

Đặng Thùy An
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
Winter_Cat
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 22:20

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=goc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBMN có

NA là trung tuýen

NI=2/3NA

=>I là trọng tâm

=>MI đi qua trung điểm của BN

Nguyễn Thái Sơn
Xem chi tiết
Trí Tiên亗
1 tháng 9 2020 lúc 9:08

Hình như hiễn thị cô ạ, thêm (<AC.Từ B vẽ đường thẳng vuông góc với AB,từ C kẻ đường thẳng vuông góc với AC, hai đường này cắt nhau tại I. Gọi E là giao điểm của AI và BC.)

Thái sơn năm nay chắc lên lớp 8 rồi nên tớ làm theo cách lớp 8 nhé!

A B C I E K

a) Xét tứ giác ABCI

\(\Rightarrow\widehat{A}+\widehat{ABI}+\widehat{ACI}+\widehat{BIC}=360^o\left(dl\right)\)

\(\Leftrightarrow90^o+90^o+90^o+\widehat{BIC}=360^o\)

\(\Leftrightarrow\widehat{BIC}=360^o-\left(90^o+90^o+90^o\right)=90^o\)

Ta dễ dàng chứng minh được AC//BI ( \(\widehat{BAC}+\widehat{ABI}=90^o+90^o=180^o\) Nằm ở vị trí trong cùng phía bù nhau)

Ta dễ dàng chứng minh được AB//CI ( \(\widehat{ACI}+\widehat{BIC}=90^o+90^o=180^o\)Nằm ở vị trí trong cùng phía bù nhau)

Xét \(\Delta ABC\)và \(\Delta BIC\)

\(\widehat{CBI}=\widehat{ACB}\left(AC//BI\right)\)

BC là cạnh chung

\(\widehat{ICB}=\widehat{CBA}\left(AB//CI\right)\)

=> \(\Delta ABC\)=\(\Delta BIC\)(G-C-G)

=> AC = BI 

=> AB = CI

Xét tứ giác ABCI

Có \(\widehat{BAC}=\widehat{ABI}=\widehat{ACI}=\widehat{BIC}=90^o\)

VÀ AC = BI ; AB = CI

=> Tứ giác ABCI là hình chữ nhật

=>Hai đường chéo BC và AI cắt nhau tại E 

=> E là trung điểm của BC và AI

\(\Rightarrow AE=\frac{1}{2}BC\left(DPCM\right)\) 

Câu b,c tối mình sẽ suy nghĩ sau

Khách vãng lai đã xóa