cho tam giác abc vuông tại a có i là trung điểm của bc qua i vẽ đường thẳng d vuông góc với bc qua c vẽ đường thẳng vuông góc với ac cắt d tại e chứng minh ae vuông góc với bi
Cho tam giác ABC vuông tại A (AB < AC). Gọi I là trung điểm của tia AC. Qua I kẻ đường thẳng vuông góc với BC, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại E. Chứng minh rằng AE vuông góc với BI.
Gọi giao điểm của 2 tia EC và BI là F, nối FA.
Xét \(\Delta\)BAI và \(\Delta\)FCI có: AI=CI; ^BAI = ^FCI; ^AIB = ^CIF => \(\Delta\)BAI=\(\Delta\)FCI (g.c.g)
=> AB=CF (2 cạnh tương ứng).
Ta có: AB vuông AC; CE vuông AC => AB // CE hay AB // CF
Xét tứ giác ABCF: AB // CF; AB=CF => Tứ giác ABCF là hình bình hành
=> AF // BC. Mà EI vuông BC nên EI vuông AF.
Xét \(\Delta\)AEF: AC vuông EF; EI vuông AF; điểm I thuộc AC => I là trực tâm \(\Delta\)AEF
=> FI vuông AE. Lại có: Tứ giác ABCF là hình bình hành; I là trung điểm đường chéo AC
=> 3 điểm F;I;B thẳng hàng. Vậy khi FI vuông AE thì BI cũng vuông AE (đpcm).
Cho tam giác ABC vuông tại A (AB < AC). Gọi I là trung điểm của AC. Qua I kẻ đường thẳng vuông góc với BC, qua C kẻ đường thẳng vuông với AC, chúng cắt nhau tại E. Chứng minh AE vuông góc với BI
Cho tam giác ABC vuông tại A có AB<AC. Vẽ AH vuông góc với cạnh BC tại. Trên tia đối của tia AH lấy điểm Dsao cho DH=AH.
a) Chứng minh tam giác HCD= tam giác HCA
b)Chứng minh BD vuông góc với DC
c)Qua điểm Avẽ đường thẳng song song với cạnh BC, qua điểm Cvẽ đường thẳng song song với cạnh AB, hai đường thẳng này cắt nhau tại E. Chứng minh AE=BC
d)Gọi M là trung điểm cạnh HC, qua Mvẽ đường thẳng vuông góc với cạnh HC cắt cạnh DC tại I. Từ H vẽ đường thẳng vuông góc với cạnh AB tại K. Chứng minh ba điểm H,K,I thẳng hàng.
cho tam giác ABC vuông góc tại A, có AB<AC. Gọi là trung điểm của AC, qua I kẻ đường thẳng vuông góc với BC. Qua C kẻ đường thẳng cuông gocs AC, chúng cắt nhau tại E. Chứng minh rằng BI vuông góc với AE
Gọi D là giao điểm của AB và IE
\(\Delta\)BDC có hai đường cao DI và CA cắt nhau tại I nên I là trực tâm của \(\Delta\)BDC
=> BI vuông góc CD (1)
Xét \(\Delta\)IAD và \(\Delta\)ICE có:
^IAD = ^ICE ( = 900)
IA = IC
^AID = ^CIE (đối đỉnh)
Do đó \(\Delta\)IAD = \(\Delta\)ICE (g.c.g)
=> ID = IE (hai cạnh tương ứng)
Xét \(\Delta\)AIE và \(\Delta\)CID có:
AI = CI (gt)
^AIE = ^CID (đối đỉnh)
DI = EI (cmt)
Do đó \(\Delta\)AIE = \(\Delta\)CID (c.g.c)
=> ^IAE = ^ICD (hai góc tương ứng)
Mà hai góc này ở vị trí slt nên AE //CD (2)
Từ (1) và (2) suy ra BI vuông góc AE (đpcm)
Cho tam giác ABC có AB<AC. Từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác góc A tại H. Đường thẳng này cắt AB tại E và AC tại F.Vẽ BM // EF.
a) Chứng minh: MF=BE=CF
b)Qua D vẽ đường thẳng vuông góc với BC cắt AH tại I. Chứng minh:IF vuông góc AC
Cho tam giác ABC vuông tại A,có AB < AC. Vẽ AH vuông góc BC tại H.Trên tia đối của tia HA lấy điểm D sao cho HD=HA
a)C/m tam giác HCD=tam giác HCA
b)c/m BD vuông góc DC
c) Qua điểm A vẽ đường thẳng song song với BC,qua điểm c vẽ đường thẳng song song với cạnh AB,hai đường thẳng này cắt nhau tại E . C/m AE=BC
d) Gọi M là trung điểm cạnh HC, qua M vẽ đường thẳng vuông góc với cạnh HC cắt cạnh DC tại I .Từ H vẽ đường thẳng vuông góc với cạnh AB tại k. C/m K,H,I thẳng hàng
Cho tam giác ABC vuông tại A có AB<AC. I là trung điểm của AC, Đường thẳng vuông góc với AC tại C và đường thẳng qua I vuông góc với BC, chúng cắt nhau tại E. CMR: AE vuông góc với BI?
Cho tam giác ABC vuông tại A, tia phân giác góc ABC cắt đường thẳng AC tại D. Vẽ DE vuông góc với BC tại E. a) CMR tam giác ABD = tam giác EBD. Chứng minh BD là đường trung trực của đoạn thẳng AE. c) Đường thẳng BD cắt đường thẳng AE tại điểm I . Trên tia đối của tia EI lấy điểm N sao cho EI=EN . Trên tia đối của tia AB lấy điểm M sao cho A là trung điểm của BM . Chứng minh MI đi qua trung điểm của đoạn thẳng BN Các cậu giúp tớ với :( yêu cầu vẽ hình và giải bài ) Giúp tớ , tớ cần gấp ạ
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBMN có
NA là trung tuýen
NI=2/3NA
=>I là trọng tâm
=>MI đi qua trung điểm của BN
Cho tam giác ABC vuông tại A có AB<AC.Từ B vẽ đường thẳng vuông góc với AB,từ C kẻ đường thẳng vuông góc với AC, hai đường này cắt nhau tại I. Gọi E là giao điểm của AI và BC.
a) CMR AE=1/2 BC
b) Vẽ AK vuông góc với BC(K thuộc BC) Chứng minh góc KAE=góc ABC-góc ACB
c) Qua I vẽ đường thẳng song song với BC cắt tia AK tại G. Chứng minh góc BGC = 90 độ
Hình như hiễn thị cô ạ, thêm (<AC.Từ B vẽ đường thẳng vuông góc với AB,từ C kẻ đường thẳng vuông góc với AC, hai đường này cắt nhau tại I. Gọi E là giao điểm của AI và BC.)
Thái sơn năm nay chắc lên lớp 8 rồi nên tớ làm theo cách lớp 8 nhé!
a) Xét tứ giác ABCI
\(\Rightarrow\widehat{A}+\widehat{ABI}+\widehat{ACI}+\widehat{BIC}=360^o\left(dl\right)\)
\(\Leftrightarrow90^o+90^o+90^o+\widehat{BIC}=360^o\)
\(\Leftrightarrow\widehat{BIC}=360^o-\left(90^o+90^o+90^o\right)=90^o\)
Ta dễ dàng chứng minh được AC//BI ( \(\widehat{BAC}+\widehat{ABI}=90^o+90^o=180^o\) Nằm ở vị trí trong cùng phía bù nhau)
Ta dễ dàng chứng minh được AB//CI ( \(\widehat{ACI}+\widehat{BIC}=90^o+90^o=180^o\)Nằm ở vị trí trong cùng phía bù nhau)
Xét \(\Delta ABC\)và \(\Delta BIC\)có
\(\widehat{CBI}=\widehat{ACB}\left(AC//BI\right)\)
BC là cạnh chung
\(\widehat{ICB}=\widehat{CBA}\left(AB//CI\right)\)
=> \(\Delta ABC\)=\(\Delta BIC\)(G-C-G)
=> AC = BI
=> AB = CI
Xét tứ giác ABCI
Có \(\widehat{BAC}=\widehat{ABI}=\widehat{ACI}=\widehat{BIC}=90^o\)
VÀ AC = BI ; AB = CI
=> Tứ giác ABCI là hình chữ nhật
=>Hai đường chéo BC và AI cắt nhau tại E
=> E là trung điểm của BC và AI
\(\Rightarrow AE=\frac{1}{2}BC\left(DPCM\right)\)
Câu b,c tối mình sẽ suy nghĩ sau