Tìm x,y,t thuộc z biết :\(\frac{x}{10}\)=\(\frac{12}{y}\)=\(\frac{63}{210}\)=\(\frac{t}{-80}\)
a) tìm x y t thuộc z biết x/10=12/y=63/210=t /-80
b) tìm 1 phân số biết phân số đó = 15/16 và ucln tử và mẫu là 24
Tìm x,y,z,t biết:
\(\frac{12}{16}\)=\(\frac{-x}{4}\)=\(\frac{2.t}{y}\)=\(\frac{z}{-80}\)
Tìm x,y,t thuộc Z
a) x/10=12/y=63/210=t/-80
b) Tìm phân số biết:
Phân số đó = 15/16 và ƯCLN của tử và mầu là 24
a) Tìm x và y biết: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\) và \(x^4\) \(y^4\) = 81
b) Cho x; y; z; t thuộc N*. Chứng minh rằng: \(\frac{x}{x+y+z}=\frac{y}{x+y+t}=\frac{z}{y+z+t}=\frac{t}{x+z+t}\) có giá trị không phải số tự nhiên.
Tìm x,y,z biết:
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{10}\)và x+y-z=63
Biết \(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}\)
Tìm P = \(\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{y+x}+\frac{t+x}{z+y}\)
Biết:\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)
Tìm giá tị của \(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Ta có: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)
Thêm 1 vào mỗi phân số ta được:
\(\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{x+t+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{x+t+y}=\frac{x+y+z+t}{x+y+z}\)
- Nếu x + y + z + t \(\ne\) 0 thì x = y = z = t
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)
- Nếu x + y + z + t = 0 thì x + y = -(z + t)
y + z = -(t + x)
z + t = -(x + y)
t + x = -(y + z)
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
P= [TEX]\frac{x+y}{x+t} [/TEX] + [TEX]\frac{y+z}{t+x} [/TEX] + [TEX]\frac{z+t}{x+y} [/TEX] + [TEX]\frac{t+x}{z+y} [/TEX]
Tìm giá trị P biết : [TEX]\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}= \frac{t}{x+y+z}[/TEX]