rút gọn \(\sqrt{2x+2\sqrt{x^2}-1}\)VỚI \(\hept{\begin{cases}x>hoacbang1\\\sqrt{x-1}+\sqrt{x-1}=\sqrt{7}\end{cases}}\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
Giải các hệ phương trình sau :
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\\x+\sqrt{3y}=\sqrt{2}\end{cases}}\) b) \(\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\x+\left(\sqrt{2}+1\right)y=1\end{cases}}\) c) \(\hept{\begin{cases}x-2\sqrt{2y}=\sqrt{5}\\\sqrt{2x}+y=1-\sqrt{10}\end{cases}}\) d) \(\hept{\begin{cases}\sqrt{3x}-\sqrt{2y}=1\\\sqrt{2x}+\sqrt{3y}=\sqrt{3}\end{cases}}\)
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
\(d,\hept{\begin{cases}\sqrt{6x}-\sqrt{4y}=\sqrt{2}\\\sqrt{6x}+\sqrt{9y}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5\sqrt{y}=3-\sqrt{2}\\\sqrt{2x}+\sqrt{3y}=\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{11-6\sqrt{2}}{25}\\x=\frac{9+6\sqrt{2}}{25}\end{cases}}\)
Tính hoặc rút gọn giá trị biểu thức
\(\sqrt{2x+2\sqrt{x^2-4}}\) Với \(\hept{\begin{cases}x>2\\\sqrt{x-2}+\sqrt{x+2}=\sqrt{7}\end{cases}}\)
\(\sqrt{2x+2\sqrt{x^2-4}}\)
\(\sqrt{x-2+2\sqrt{x-2}\sqrt{x+2}+x+2}\)\(\)
\(\sqrt{\left(\sqrt{x-2}+\sqrt{x+2}\right)^2}\)
\(\left|\sqrt{x-2}\right|+\left|\sqrt{x+2}\right|\)
\(\sqrt{x-2}+\sqrt{x+2}\)
\(=\sqrt{7}\)
\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y\:=3\\x\:+\sqrt{2}y=2\end{cases}}\)
\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)
\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)
em ko biết làm :">
\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\2\sqrt{x-2}+2\sqrt{y-3}=10\end{cases}}\)
\(\Leftrightarrow2\sqrt{x-2}+3\sqrt{y-3}-2\sqrt{x-2}-2\sqrt{y-3}=14-10\)
\(\Leftrightarrow\sqrt{y-3}=4\Leftrightarrow y-3=16\Leftrightarrow y=19\)
\(\Rightarrow\sqrt{x-2}+\sqrt{19-3}=5\)
\(\Leftrightarrow x-2=\left(5-4\right)^2\Leftrightarrow x-2=1\Leftrightarrow x=3\)
\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3-y=6-2y\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+2y=6\\6x-3y=21\end{cases}}\)
\(\Leftrightarrow6x+2y-6x+3y=6-21\)
\(\Leftrightarrow5y=-15\Leftrightarrow y=-3\)
\(\Rightarrow x=\frac{7-3}{2}=2\)
\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y=3\\x+\sqrt{2}y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+\sqrt{2}y+y=3\\\sqrt{2}x+y=2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\sqrt{2}x+\sqrt{2y}+y-\sqrt{2}x-y=3-2\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}y=3-2\sqrt{2}\)
\(\Rightarrow y=\frac{3-2\sqrt{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}}-2\)( em ko biết rút gọn sao :vv)
\(\Rightarrow x+\sqrt{2}\left(\frac{3}{\sqrt{2}}-2\right)=2\)
\(\Leftrightarrow x+3-2\sqrt{2}=2\)
\(\Leftrightarrow x=2\sqrt{2}-1\)
Rút gọn giá trị của \(\sqrt{2x+2\sqrt{x^2-9}}với\hept{\begin{cases}x>3\\\sqrt{x-3}\sqrt{x+3}+\sqrt{11}\end{cases}}\)a
Rút gọn biểu thức:
A= \(\hept{\begin{cases}\sqrt{x}+2\\2-\sqrt{x}\end{cases}}+\frac{\sqrt{x}}{\sqrt{x}+2}-\frac{4\cdot x+2\sqrt{x}+4}{x-4}\)/ \(\hept{\begin{cases}2\\2-\sqrt{x}\end{cases}+\frac{3+\sqrt{x}}{2\sqrt{x}-x}}\)
a/\(\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)
b/\(\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)
c/\(\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)
\(a,\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-y\\3-y-2y=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\-3y=4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-\left(-\frac{4}{3}\right)\\y=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=-\frac{4}{3}\end{cases}}}\)
\(b,\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\left(1\right)\\4x+2y=11\left(2\right)\end{cases}}\)
Lấy ( 1 ) trừ ( 2 ) Ta được 0x + 0y = - 1
=> hệ pt vô nghiệm
\(c,\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}.\left(\sqrt{2}-\sqrt{3}y\right)-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{6}y-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\left(\sqrt{6}+\sqrt{3}\right)y=-1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\sqrt{3}.\frac{1}{\sqrt{6}+\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=1\end{cases}}\)
cho biểu thức g=\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}}\)\((\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{1-\sqrt{x}}-\frac{2\sqrt{x}}{x-1}).(\sqrt{x}+1)(x>0,x\ne1).\)
Giải hộ 1 trong 3 hệ này nhé @@ đọc đề xong mà ngu luôn
1) \(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)
2)\(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x+3}=\frac{y-x}{3}\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)
3)\(\hept{\begin{cases}x+\sqrt{y-1}=6\\\sqrt{x^2+2x+y}+2x\sqrt{y-1}+2\sqrt{y-1}=29\end{cases}}\)
1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)
=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)
Tham khảo nhé~