tìm các số nguyên x,y thỏa mãn 5xy +x-10y=14
tìm các cặp số x, y thỏa mãn : 2x-5y+5xy=14
x-5y+5xy=14
2x+5y(x-1)=14
2x-2+5y(x-1)=12
2(x-1)+5y(x-1)=12
(x-1).(2+5y)=12
x,y thuộc Z nên xét các trường hợp,ta có:
x=2,y=2;x=7,y=0
tìm các số nguyên x,y thỏa mãn 2x3 -2y3 +5xy+1=0
tìm tất cả các số nguyên x,y thỏa mãn x^5=y^5 + 10y^3+20y +1
Tìm các số nguyên x, y thỏa mãn: x^2+5xy+6y^2+x+2y-2=0
(x2 + 4xy + 4y2) + xy + 2y2 + x + 2y = 2
(x + 2y)2 + (x + 2y)(y + 1) = 2
(x + 2y)(x + 3y + 1) = 2
TH1: \(\hept{\begin{cases}x+2y=1\\x+3y+1=2\end{cases}}\)<=>\(\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)
TH2: \(\hept{\begin{cases}x+2y=2\\x+3y+1=1\end{cases}}\)<=> \(\hept{\begin{cases}x=6\\y=-2\end{cases}}\)(thỏa mãn)
TH3: \(\hept{\begin{cases}x+2y=-1\\x+3y+1=-2\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)(thỏa mãn)
TH4: \(\hept{\begin{cases}x+2y=-2\\\text{x+3y+1=-1}\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=0\end{cases}}\)(thỏa mãn)
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
Bài 1. Tìm các số nguyên x, y thỏa mãn
2x-3y+5xy= 5
\(2x-3y+5xy=5\)
\(\Leftrightarrow x\left(2-5y\right)-\frac{3}{5}\left(2-5y\right)=\frac{19}{5}\)
\(\Leftrightarrow5x\left(2-5y\right)-3\left(2-5y\right)=19\)
\(\Leftrightarrow\left(2-5y\right)\left(5x-3\right)=19\) ( lập bảng )
tìm các cặp số nguyên (x;y) thỏa mãn: \(x^2\)-5xy +6y^2+1=0
Tìm các số nguyên x,y thỏa mãn điều kiện:
7/(15x) + 9/(10y) = 2/5 - 359/(30xy)
Tìm các số nguyên x và y thỏa mãn: 6x2 + 10y2 + 2xy - x - 28y + 18 = 0