Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Tùng Anh
Xem chi tiết
Trang Trần Vũ Yên
23 tháng 12 2021 lúc 21:19

khó và khó

Lê Đăng Đức Anh
Xem chi tiết
thiiee nè
22 tháng 12 2021 lúc 21:51

tôi làm luôn nhé ko ghi đề bài

A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)

A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)

A=2+2^2.7+...+2^99.7

A=2+(2^2+...+2^99).7 ko chia hết cho 7 

Vậy A :7 thì dư 2

Phạm Cát Tường
Xem chi tiết
Park Soyeon
1 tháng 1 2019 lúc 16:21

a,Ta thấy A là tổng của các số hạng có cơ số giống nhau và có số mũ là các STN liên tiép từ 1 đến 100

số số hạng của tổng A là 100 số hạng

Cứ 2 số hạng ta nhóm thành 1 nhóm ta có

100÷

Park Soyeon
1 tháng 1 2019 lúc 16:35

mk làm tiếp mk ấn nhầm

100:2=50 nhóm

A=(2+2^2)+(2^3+2^4)+...+(2^99+2^100)

A=2(1+2)+2^3(1+2)+...+2^99(1+2)

A=2×3+2^3×3+...+2^99×3

A=(2+2^3+...+2^99)×3

Mà 3 chia hết cho 3

Suy ra (2+2^3+...+2^99)×3 chia hết cho 3

=》A chia hết cho 3

Vậy A chia hết cho 3

c,A=2+2^2+...+2^99+2^100

2A=2(2+2^2+...+2^99+2^100)

2A=2^2+2^3+.,.+2^100+2^101

2A-A=(2^2+2^3+...+2^100+2^101)-(2+2^2+...+2^100)

A=2^2+...+2^101-2-2^2-...-2^100

A=2^101-2

=》2^101-2<2^101

=》A<2^101

Vậy A<2^101

Nguyễn Duy Khánh
Xem chi tiết
Đỗ Nhật Anh
10 tháng 12 2023 lúc 10:43

.............

Tiến Vỹ
Xem chi tiết
Nguyen Van Huong
22 tháng 3 2017 lúc 17:51

1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số

Gọi số phải tìm là A

Ta có A + 4 chia hết cho 5 , 7 , 9

Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315

Do đó A = 315 - 4 = 311

2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100

S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )

S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )

S = 1.30 +...+2^96.30

S = ( 1 +...+2^96 )30

Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15

Hay S chia hết cho 15

b) Vì S cha hết cho 30 nên S chia hết cho 10

Suy ra S có tận cùng là 0

c) S = 2^1 + 2^2 + 2^3 +...+2^100

2S = 2^2 + 2^3 + 2^4 +...+ 2^101

2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )

S = 2^101 - 2^1

S = 2^101 - 2

Hồ Hương Quế
22 tháng 3 2017 lúc 17:51

1. 158

2a. 0 ( doan nha )

b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )

      = 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)

      = 2.15+2^5.15+...+2^97.15

      = 15.(2+2^5+...+2^97) chia het 15

c.2^101-2^1

3. chiu !

Trần Hoàng Việt
5 tháng 11 2017 lúc 9:38

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

Nguyễn Đăng Quyền
Xem chi tiết
Lê Thị Bích Tuyền
2 tháng 11 2015 lúc 15:00

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7

2 + (2\(^2\)+2\(^3\)+2\(^4\)) +..+ (2\(^{98}\)+2\(^{99}\)+2\(^{100}\))
 2 + 7.2\(^2\) +..+ 7.2\(^{98}\) => A chia 7 dư 2

le kim ngoc
Xem chi tiết
Nguyễn Minh Công
Xem chi tiết
Nhóc_Siêu Phàm
12 tháng 12 2017 lúc 23:07

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

Phạm Tuấn Đạt
12 tháng 12 2017 lúc 23:09

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

nguyen ha
Xem chi tiết