Cho a là nghiệm dương của phương trình
\(4x^2+x\sqrt{2}-\sqrt{2}=0\). Tính:
\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}\)
Cho a là nghiệm dương của phương trình
\(4x^2+x\sqrt{2}-\sqrt{2}=0\). Tính:
\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}\)
Ta có:
\(4a^2+a\sqrt{2}-\sqrt{2}=0\)
\(\Leftrightarrow2\sqrt{2}a^2+a-1=0\)
\(\Leftrightarrow a+1=2-2\sqrt{2}a^2\) thế vô ta được
\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{2-2\sqrt{2}a^2}{\sqrt{a^4+2-2\sqrt{2}a^2}-a^2}\)
\(=\frac{2-2\sqrt{2}a^2}{\sqrt{\left(\sqrt{2}-a^2\right)^2}-a^2}=\frac{\sqrt{2}\left(\sqrt{2}-2a^2\right)}{\sqrt{2}-2a^2}=\sqrt{2}\)
Cho a là nghiệm dương của phương trình P= \(\frac{a+1}{\sqrt{a^4+a+1}-a^2}\) .Trong đó a là nghiệm dương của phương trình \(4x^2+\sqrt{2}x-\sqrt{2}=0\)
cho a là nghiệm dương của phương trình: \(4x^2+x-\frac{1}{\sqrt{2}}=0\)
Tính Q=\(\frac{x\sqrt{2}+1}{\sqrt{4x^4+x\sqrt{2}+1}-2x^2}\)
Cho a là 1 nghiệm dương của phương trình \(4x^2+\sqrt{2}x-\sqrt{2}=0\) Tính giá trị biểu thức \(A=\frac{a+1}{\sqrt{a^4+a+1-a^2}}\)
Cho a là nghiệm dương của phương trình \(4x^2+\sqrt{2}x-\sqrt{2}=0\)
Tính S = \(\frac{a+1}{\sqrt{a^4+a+1}-a^2}\)
Cho a là nghiệm dương của phương trình \(4x^2+x\sqrt{2}-\sqrt{2}=0\)
Tính A= \(\frac{a+1}{\sqrt{a^4+a+1-a^2}}\)
\(A=\frac{a+1}{a^2+a+1-a^2}=\frac{a+1}{a+1}=1\)
Tính giá trị của biểu thức \(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}\)
trong đó a là nghiệm dương của phương trình \(4x^2+\sqrt{2}x-\sqrt{2}=0\)
Sử dụng delta thôi!
Xét \(4x^2+\sqrt{2}x-\sqrt{2}=0\) có \(4\cdot\left(-\sqrt{2}\right)=-4\sqrt{2}< 0\) nên PT có 2 nghiệm phân biệt
Mà a là nghiệm nguyên dương của PT nên ta có: \(4a^2+\sqrt{2}a-\sqrt{2}=0\)
Vì a > 0 \(\Rightarrow4a^2=-\sqrt{2}a+\sqrt{2}\)
\(\Rightarrow a^2=\frac{\sqrt{2}-\sqrt{2}a}{4}=\frac{\left(1-a\right)\sqrt{2}}{4}=\frac{1-a}{2\sqrt{2}}\)
\(\Rightarrow a^4=\left(\frac{1-a}{2\sqrt{2}}\right)^2=\frac{1-2a+a^2}{8}\)
Thay vào ta được:
\(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{\left(\sqrt{a^4+a+1}\right)^2-a^4}\)
\(=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a^4+a+1-a^4}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a+1}=\sqrt{a^4+a+1}+a^2\)
\(=\sqrt{\frac{1-2a+a^2}{8}+a+1}+\frac{1-a}{2\sqrt{2}}=\sqrt{\frac{a^2+6a+9}{8}}+\frac{1-a}{2\sqrt{2}}\)
\(=\frac{a+3}{2\sqrt{2}}+\frac{1-a}{2\sqrt{2}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Vậy \(B=\sqrt{2}\)
Cho a là nghiệm dương của phương trình \(2\sqrt{2}x^2+x-1=0\)
Tính S=\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}\)
Tính giá trị của \(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}\). Tronh đó a là nghiệm của phương trình \(4x^2+2\sqrt{x}-\sqrt{2}=0\)