Cho tam giác ABC kẻ các đường cao AA' ,BB' ,CC' đồng quy tại H.
cm HA'/AA'+HB'/BB'+HC'/CC'=1
Cho tam giác ABC có các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh HA'/AA'=HB'/BB'=HC'/CC'
Cho tam giác ABC có ba góc nhọn, ba đường cao AA', BB', CC' đồng quy tại H.CMR: \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)bằng một hằng số
+ Ta có
\(\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=\frac{S_{HBC}+S_{HAC}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
+ Ta có
\(\frac{S_{HBC}}{S_{ABC}}=\frac{\frac{HA'.BC}{2}}{\frac{AA'.BC}{2}}=\frac{HA'}{AA'}\)
+Tương tự ta cũng có
\(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\) và \(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)
=> \(\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\) Là một hằng số
Cho tam giác ABC, đường cao AA',BB',CC' cắt nhau tại H. Chứng minh
\(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1.\)
Cho tam giác ABC có 3 đường cao tương ứng là AA' ,BB' , CC' cắt nhau tại H. Chứng minh rằng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\) = 1
Ta có : \(\frac{HA'}{AA'}=\frac{S_{HBC}}{S_{ABC}};\frac{HB'}{AB'}=\frac{S_{HAC}}{S_{ABC}};\frac{HC'}{AC'}=\frac{S_{HAB}}{S_{ABC}}\)
nên \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}+S_{HAB}+S_{HAC}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Vậy \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi
Cho tam giác ABC có ba đường cao \(AA^,,BB^,,CC^,\).Gọi H là trực tâm của tam giác đó.
a) Chứng minh \(\frac{HA^,}{AA^,}+\frac{HB^,}{BB^,}+\frac{HC^,}{CC^,}=1\)
b) Chứng minh \(\frac{AA^,}{HA^,}+\frac{BB^,}{HB^,}+\frac{CC^,}{HC^,}\ge9\)
Cho tam giác ABc nhọn có ba đường cao AA' , BB' , CC" giao nhau ở H. CMR \(\frac{HA}{AA'}-\frac{HB}{BB'}-\frac{HC}{CC'}=1\)
Cho tam giác ABC với 3 đường cao AA' , BB' và CC' gọi H là trực tâm của tam giác CMR:
\(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
Cho tam giác ABC với 3 đường cao AA' , BB' và CC' gọi H là trực tâm của tam giác. CMR : \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
có
\(\dfrac{s_{hbc}}{s_{abc}}=\dfrac{\dfrac{ha'.bc}{2}}{\dfrac{aa'.bc}{2}}=\dfrac{ha'}{aa'}\\ cmtt\\ =>\left\{{}\begin{matrix}\dfrac{s_{ahc}}{s_{abc}}=\dfrac{hb'}{bb'}\\\dfrac{s_{ahb}}{s_{abc}}=\dfrac{hc'}{cc'}\end{matrix}\right.\\ =>\dfrac{ha'}{aa'}+\dfrac{hb'}{bb'}+\dfrac{hc'}{cc'}=\dfrac{s_{hbc}}{s_{abc}}+\dfrac{s_{ahc}}{s_{abc}}+\dfrac{s_{ahb}}{s_{abc}}\\ =\dfrac{s_{abc}}{s_{abc}}\\ =1\left(đpcm\right)\)
vậy ...
chúc may mắn :))