Tim bo ba x y z thoa man
X^2+2y^2+2^2-2(xy+2y+2z+8)=0
Tim bo ba x y z thoa man
X^2+2y^2+2^2-2(xy+2y+2z+8)=0
Giup Minh nha can gap lam
Tim x y z thoa man x^2+2y^2+z^2-2(xy+2y+2z+8)=0 can rat gap
X^2+2y^2+z^2-2(xy+2y+2z+8)=0 Tim x y z
cho x,y,z>0 va thoa man x+y+z=1. Tim GTNN cua F= 14(x2 +y2 +z2 ) +\(\frac{xy+yz+zx}{x^2y+y^2z+z^2x}\)
cho ba so thuc khong am x,y,z thoa man x+y+z=3 Tinh GTNN cua A=can(2x^2+3xy+2y^2)+can(2y^2+3yz+2z^2)+can(2z^2+3zx+2x^2)
cho cac so x,y,z va x+y+z khac 0 thoa man dieu kien
\(\frac{x+2y}{x+2y-z}+\frac{y+2z}{y+2z-x}+\frac{z+2x}{z+2x-+y}\)
tinh gt bieu thuc \(T=\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{z^2+x^2}{zx}\)
tim x,y thuoc z thoa x^2+xy+y^2=x^2y^2
X^2+2y^2+z^2-2(xy+2y+2z+8)=0
\(x^2+2y^2+z^2-2\left(xy+2y+2z+8\right)=0\)
\(pt\Leftrightarrow x^2+2y^2+z^2-2xy+4y+4z+16=0\)
\(\Leftrightarrow x^2-2xy+y^2+y^2+4y+4+z^2+4z+4+8=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2+8=0\)
Dễ thấy: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y+2\right)^2\ge0\\\left(z+2\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2+\left(z+2\right)^2+8>8\)
Vô nghiệm
CHO CAC SO DUONG x,y,z THOA MAN :x+y+z=1
tìm giá trị nhỏ nhất
M=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)