Tìm a và b , biết rằng :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a\times b}=a\times b-a-b\)
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
chứng minh \(a+b+c=a\times b\times c\)
1/a + 1/b + 1/c = 2
<=> (1/a + 1/b + 1/c) = 4
<=> 1/a^2 1/b^2 + 1/c^2 +2.(1/ab + 1/bc + 1/ca) = 4
<=> 2.(1/ab + 1/bc + 1/ca) = 4-(1/a^2 +1/b^2 + 1/c^2) = 4-2 = 2
<=> 1/ab + 1/bc + 1/ca = 1
<=> a+b+c/abc = 1
<=> a+b+c = abc = a x b x c
Tk mk nha
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(\Rightarrow\) \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow2^2=\)\(2+2.\left(\frac{a+b+c}{abc}\right)\)
\(\Rightarrow\frac{a+b+c}{abc}=\frac{2^2-2}{2}=0\)
\(\Rightarrow a+b+c=abc\) \(\left(đpcm\right)\)
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow2^2=2+2\left(\frac{a+b+c}{abc}\right)\)
\(\Rightarrow\frac{a+b+c}{abc}=\frac{2^2-2}{2}=1\)
\(\Rightarrow a+b+c=abc\)
Cho a, b, c là 3 số thực thõa khác hau
Chứng minh \(\frac{a+b}{a-b}\times\frac{b+c}{b-c}+\frac{b+c}{b-c}\times\frac{c+a}{c-a}+\frac{c+a}{c-a}\times\frac{a+b}{a-b}=-1\)
đat x=\(\frac{a+b}{a-b}\) tu day suy ra \(x+1=\frac{2a}{a-b}\) \(x-1=\frac{2b}{a-b}\)
ttu \(y=\frac{b+c}{b-c}\Rightarrow y+1=\frac{2b}{b-c};y-1=\frac{2c}{b-c}\)
\(z=\frac{c+a}{c-a}\Rightarrow z+1=\frac{2c}{c-a};z-1=\frac{2a}{c-a}\)
ta sẻ có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\) (bn chịu khó cm nhé_
khai triên ra ta sẽ có \(xy+yz+xz=-1\) suy ra dpcm
Rút gọn rồi tính giá trị của biểu thức
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}\div\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}vớia=7,25;b=3,25\)
\(\frac{a-b}{\sqrt{a\times\left(a+2\times b\right)+b^2}}\div\sqrt{\frac{\left(a-b\right)^2}{a\times\left(a+b\right)}}vớia>b>0và\frac{a}{b}=\frac{9}{7}\)
\(\frac{x-1}{\sqrt{y}-1}\times\sqrt{\frac{\left(y-2\times\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}vớix=\frac{-1}{2};y=121\); giúp mk vs
Câu 1 : Cho M = \(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times....\times\frac{631}{632}\) . Chứng minh rằng : M < 0,04
Câu 2 :Cho M = \(\frac{5}{2^2}+\frac{10}{3^2}+\frac{17}{4^2}+...+\frac{2019^2 +1}{2019^2}\). Chứng minh rằng : M không là số tự nhiên
Câu 3 : Giả sử \(p\)và \(p^2\) là các số nguyên tố . Chứng minh rằng : \(p^3+p^2+1\)cũng là số nguyên tố
Câu 4 : cho a , b là các số tự nhiên \(\ne\)0 , biết ( a , b ) = 1 . Chứng minh rằng phân số\(\frac{a\times b}{a^2+b^2}\)là phân số tối giản
Bài 43Cho A=\(\left(\frac{1}{2^2}-1\right)\times\left(\frac{1}{3^2}-1\right)\times\left(\frac{1}{4^2}-1\right)\times....\times\left(\frac{1}{100^2}-1\right)\)
So sánh A với \(-\frac{1}{2}\)
Bài 58.Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\).Chứng minh rằng a=c hoặc a+b+c+d=0
BÀI 1:TÍNH
A=\(\frac{7^2}{7\times8}\times\frac{8^2}{8\times9}\times...\times\frac{11^2}{11\times12}\)
B=\(\left(1+\frac{1}{11}\right)\times\left(1+\frac{1}{12}\right)\times...\times\left(1+\frac{1}{15}\right)\)
C=\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2010}\right)\)
D=\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2010}-1\right)\)
BÀI 2: Tìm phân số tối giản \(\frac{a}{b}\)nhỏ nhất (a,b thuộc N sao)để khi nhân \(\frac{a}{b}với\frac{55}{16}:\frac{25}{24}\)được tích là các số tự nhiên.
\(B=\frac{12}{11}x\frac{13}{12}x.......x\frac{16}{15}\)
\(=\frac{16}{11}\)
Cho a, b, c là 3 số thực khác 0
\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)
Tính GTBT: B = \((1+\frac{b}{a}^a)\times(1\times\frac{a}{c})\times1+\frac{b}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)
\(=\frac{a+b-2017c+b+c-2017a+c+a-2017b}{a+b+c}=\frac{-2015\left(a+b+c\right)}{a+b+c}=-2015\)
Do đó :
\(\frac{a+b-2017c}{c}=-2015\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)
\(\frac{b+c-2017a}{a}=-2015\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)
\(\frac{c+a-2017b}{b}=-2015\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)
Thay (1), (2) và (3) vào \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\) ta được :
\(B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy \(B=8\)
Chúc bạn học tốt ~
BÀI 1:TÍNH
A=\(\frac{7^2}{7\times8}\times\frac{8^2}{8\times9}\times...\times\frac{11^2}{11\times12}\)
B=\(\left(1+\frac{1}{11}\right)\times\left(1+\frac{1}{12}\right)\times...1+\frac{1}{15}\)
C=\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2010}\right)\)
D=\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2010}-1\right)\)
BÀI 2:Tìm p/số tối giản \(\frac{a}{b}\)nhỏ nhất (a,b\(\in N\cdot\)để khi nhân \(\frac{a}{b}với\frac{55}{16};\frac{25}{24}\)thì ta được tích là các số tự nhiên
cho \(a+b+c=a\times b\times c\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
tính \(M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Làm tương tự bài : Câu hỏi của Hoàng Nguyễn Quỳnh Khanh - Toán lớp 8 - Học toán với OnlineMath