Tìm GTLN hoặc GTNN của biểu thức: \(M=\frac{1}{x^2+x+1}\)
Tìm GTLN hoặc GTNN của biểu thức
D = \(\frac{x^{2^{ }}+2}{x^2+1} \)
\(D=\frac{x^2+2}{x^2+1}=\frac{x^2+1+1}{x^2+1}=\frac{x^2+1}{x^2+1}+\frac{1}{x^2+1}=1+\frac{1}{x^2+1}\)
D đạt giá trị lớn nhất
<=> \(\frac{1}{x^2+1}\) đạt giá trị lớn nhất
<=> x2 + 1 đạt giá trị nhỏ nhất
x2 lớn hơn hoặc bằng 0
x2 + 1 lớn hơn hoặc bằng 1
\(\frac{1}{x^2+1}\le1\)
\(1+\frac{1}{x^2+1}\le2\)
Vậy Max D = 2 khi x = 0
tìm GTLN hoặc GTNN của biểu thức sau \(\frac{1}{2+\sqrt{6-x^2}}\)
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
tìm GTLN hoặc GTNN của biểu thức: A = (x+1)^2 + 9/(x+1)^2 + 2
\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)
Dấu = xảy ra khi x=-1
Tìm Gtnn hoặc gtln của biểu thức
Q=-5|x+1/2|+2021 C=5/3.|x-2|+2
\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)
Dấu ''='' xảy ra khi x = -1/2
Vậy GTLN của Q là 2021 khi x = -1/2
\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN của C là 2 khi x = 2
Bài 8: Tìm GTNN hoặc GTLN của các biểu thức sau: B = y²-y+1 E = x -x² +2
B=y^2-y+1
=y^2-2*y*1/2+1/4+3/4
=(y-1/2)^2+3/4>=3/4
Dấu = xảy ra khi y=1/2
E=-x^2+x+2
=-(x^2-x-2)
=-(x^2-x+1/4-9/4)
=-(x-1/2)^2+9/4<=9/4
Dấu = xảy ra khi x=1/2
Tìm GTLN, GTNN của biểu thức \(M=\frac{4x+1}{x^2+3}\).
Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2
\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)
Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)
Tìm GTLN hoặc GTNN của biểu thức \(B=\frac{x^2+15}{x^2+3}\)
Tìm GTLN hoặc GTNN của biểu thức sau
C= 5(x-2)2+1
\(\left(x-2\right)^2\ge0\) đẳng thức khi x=2
\(5.\left(x-2\right)^2\ge0\)đẳng thức khi x=2
\(5.\left(x-2\right)^2+1\ge1\)đẳng thức khi x=2
Vậy GTNN A là 1 khi x=2
ta có 5(x-2)2 \(\ge\)0 \(\forall\)x
suy ra 5(x-2)2 + 1 \(\ge\)1 \(\forall\)x
Dấu "=" xảy ra khi x-2=0
\(\Leftrightarrow\) x=2
Vậy GTNN của C là 1 khi x=2
Tìm GTLN hoặc GTNN của biểu thức: B=(1-x)(3x+4)
\(B\left(1-x\right)\left(3x+4\right)\)
\(\rightarrow B=\frac{1}{3}\left(3-3x\right)\left(3x+4\right)\)
\(\rightarrow B\text{⩽ }\frac{1}{3}\left(\frac{3-3x+3x+4}{2}\right)^2\)
\((BTD\)\(AM-GM)\)
\(\rightarrow B\text{⩽ }\frac{1}{3}.\frac{49}{4}\)
\(\rightarrow B\text{⩽ }\frac{49}{12}\)
Dấu '' = '' xảy ra \(\Leftrightarrow3-3x=3x+4\Leftrightarrow-\frac{1}{6}\)
Vậy \(max\)\(B=\frac{49}{12}\Leftrightarrow x=-\frac{1}{6}\)
\(B=\left(1-x\right).\left(3x+4\right)\)
Ta có :
\(B=3x+4-3x^2-4x\)
\(B=-3x^2-x+4\)
\(B=-3\left(x^2+\frac{1}{3}x-\frac{4}{3}\right)\)
\(B=-3\left(x^2+2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}-\frac{4}{3}\right)\)
\(B=-3\left[\left(x+\frac{1}{6}\right)^2-\frac{49}{36}\right]\)
Vì \(\left(x+\frac{1}{6}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{36}\right)^2-\frac{49}{36}\ge-\frac{49}{36}\)
\(\Rightarrow B\le\frac{49}{12}\)
\(\Rightarrow\)GTLN của B là \(\frac{49}{12}\)Khi \(x=-\frac{1}{6}\)