Cho hbh ABCD có AC vuông góc với AD.Gọi E,F lần lượt là trung điểm của AB,CD.CM AECF là hbh
Cho HBH ABCD Vẽ AE vuông góc BD CF vuông góc BD tại F
a) chứng minh AECF là HBH
b) M là giao điểm của AE và CD , N là giao điểm của CF và AB O là trung điểm của AC .C/m M O N thẳng hàng
Cho HBH ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Gọi M, N lần lượt là gia điểm của BD với AF, CH.
a,CMR tứ giác EMGN là HBH
b,Tìm điều kiện của HBH ABCD để tứ giác EMGN là HCN
a: Gọi O là giao của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AECG có
AE//CG
AE=CG
Do đó: AECG là hình bình hành
=>AG//CE và AG=CE
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AF//CH và AF=CH
Xét ΔANB có
E là trung điểm của AB
EM//AN
Do đó: M là trung điểm của BN
=>BM=MN
Xét ΔDMC có
G là trung điểm của DC
GN//MC
Do đó: N là trung điểm của DM
=>DN=MN=MB=1/3DB
DN=1/3DB
DO=1/2DB
Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)
Xét ΔADC có
DO là trung tuyến
DN=2/3DO
Do đó: N là trọng tâm
=>A,N,G thẳng hàng và C,N,H thẳng hàng
Xét ΔABC có
BO là trung tuyến
BM=2/3BO
Do đó: M là trọng tâm
=>A,M,F thẳng hàng và C,M,E thẳng hàng
Xét ΔEBM và ΔGDN có
EB=GD
\(\widehat{EBM}=\widehat{GDN}\)
BM=DN
Do đó: ΔEBM=ΔGDN
=>EM=GN
Xét tứ giác EMGN có
EM//GN
EM=GN
Do đó: EMGN là hình bình hành
b: Để EMGN là hình chữ nhật thì EG=NM
=>\(AD=\dfrac{BD}{3}\)
Cho hbh ABCD. Gọi E, F là chân đường vuông góc của A và C xuống đường chéo BD. Chứng minh AECF là hbh
Cho hbh ABCD . Gọi O là giao điểm của AC và BD . M ,N là trung điểm của OD , OB . Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB
a) CM tứ giác AMCN là hbh
b)tứ giác AECF là hình j
c) CM E và F đx vs nha qua O
d) CM EC = 2DE
cho tứ giác ABCD có E,F,G,H lần lượt là trung điểm của các đoạn thẳng BD,AB,AC,BC
Cho AB=a , BC=b . Tính chu vi hbh EFGH
Cho HBH ABCD.O là giao điểm của 2 đường chéo ,gọi E,F lần lượt là trung điểm của OB,OD.a)tg AECF là hình gì.b)CE cắt ab tại g.af cắt cd tại k.c/mAK=CG
a: Xét tứ giác AECF có
O là trung điểm chung của AC và EF
nên AECF là hình bình hành
b: Xét tứ giácc AGCK có
AG//CK
AK//CG
=>AGCK là hình bình hành
=>AK=CG
cho tam giác ABC (AC>AB)điểm D,E lần lượt là trung điểm của AC,BC.Gọi F là điểm đối xứng với E qua D.
a)Tứ giác AECF là hình gì?Vì sao?
b)CM AECf là hbh
c)Tam giác ABC cần điều kiện gì để AECF là hình thoi
d)CM diện tích AECF=diện tích tam giác ABC
giải hộ mình câu D với ạ tkss nhìuu:33
d) Kẻ AK vuông góc với BC
Ta có: \(S_{ABC}=S_{ABE}+S_{AEC}=\frac{1}{2}AK.BE+\frac{1}{2}AK.EC=AK.BE\)(vì BE = EC (gt)) (1)
\(S_{AECF}=\frac{1}{2}AK.\left(AF+CE\right)=\frac{1}{2}AK.2.EC=AK.EC=AK.BE\)(vì AECF là hình bình hành => AF = EC) (2)
Từ (1) và (2) => \(S_{ABC}=S_{AECF}\)
Cho hbh ABCD,AB=2AD , gọi E,F lần lượt là trung điểm của AB,AC
a, tứ giác ADEF là hình gì? Chứng minh
b, gọi M là giao điểm của AF và DE , gọi N là giao điểm của BF và CE chứng minh tứ giác EMFN là hcn
c,chứng minh 3 đường thẳng AC,BD,E đồng quy
d,hbh ABCD có thêm điều kiện gì để tứ giác EMFN là hình vuông