Chứng minh :
\(\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=\left|1+\frac{1}{a}-\frac{1}{a+1}\right|\)
Áp dụng tính: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
tính
A=\(\left(\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}\right)\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\left(1+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
\(A=-\frac{1}{2}\left(17,5-7,5\right)-\frac{2015}{2016}\left(2018-2\right)\)
=> \(A=-\frac{1}{2}\left(10\right)-\frac{2015}{2016}\left(2016\right)=-5-2015=-2020\)
Trả lời :
- 2 bn kia ở trong câu hỏi này có ai làm đúng đâu.
- Chúc bạn học tốt !
- Tk cho mk nha !
\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
\(\frac{2.1+1}{\left(1+1\right)^2}+\frac{2.2+1}{\left(2^2+2\right)^2}+\frac{2.3+1}{\left(3^3+3\right)^2}+....+\frac{2.2015+1}{\left(2015^2+2015\right)^2}+\frac{2.1016+1}{\left(2016^2+2016\right)^2}\)
tính tổng . ai giúp vs
Cho :
A = \(\left(\frac{1}{2}_{ }+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{2016}+\frac{1}{2017}\right)\)
B = \(\left(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
Tính \(\frac{B}{A}\) ?
[Các bạn giúp mình với !!!]
sao phần b k có qui luật j vậy đúng ra nó phải là 3/2014+2/2015+2/2016 chứ ( 3 phân số cuối)
\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}=\left(\frac{2015+2}{2}\right)+\left(\frac{2014+3}{3}\right)+.....\left(\frac{1+2016}{2016}\right)+\frac{2017}{2017}=\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2017}\right)\Rightarrow\frac{B}{A}=2017\)
Tính nhanh :
\(A=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{102}\right)\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}\)
Giúp mik nha
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{102}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{101}{102}=\frac{1}{102}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}=\frac{C}{D}\)
Ta có: \(D=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)(có 2015 số hạng)
\(D=\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)-2015\)
\(D=2016+\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}-2015\)
\(D=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+1=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+\frac{2016}{2016}\)
\(D=2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=2016C\)
Vậy \(B=\frac{C}{D}=\frac{C}{2016C}=\frac{1}{2016}\)
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{102}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{101}{102}=\frac{1\cdot2\cdot3\cdot....\cdot101}{2\cdot3\cdot4\cdot....\cdot102}\)
\(A=\frac{1}{102}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}=\frac{1}{2016}\)
chứng tỏ \(\frac{10^{2016}+2^3}{9}\) là số tự nhiên
So sánh A=\(\left(1+\frac{1}{2016}\right)\left(1+\frac{1}{2016^2}\right)\left(1+\frac{1}{2016^3}\right)...\left(1+\frac{1}{2016^{2017}}\right)\)
\(B=\frac{2016^2-1}{2015^2-1}\)
\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)
\(10^{2016}\)= 1000...00(mình ko cần biết cso bao nhiêu cx 0, nó là bài đánh lừa nhá bn)
\(2^3\)= 8
\(10^{2016}\) + 8= 10000...08
có 1+0+0+...+0+8=9. vậy số này chia hết cho 9
mà như bạn thấy số này là số dương nên số đó là số tự nhiên nhá
\(\sqrt{17}+\sqrt{26}+1và\sqrt{99}\)
b)chứng minh:\(\frac{1}{\sqrt{ }1}+\frac{1}{\sqrt{ }2}+\frac{1}{\sqrt{ }3}+...+\frac{1}{\sqrt{ }99}+\frac{1}{\sqrt{ }100}>10\)
c)cho:S=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)vàP=\(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)tính \(\left(S-P\right)^{2016}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{2}{3}\right)...\left(1-\frac{2015}{2016}\right)\)
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{2}{3}\right)...\left(1-\frac{2015}{2016}\right)\)
\(=\frac{1}{2}\cdot\frac{1}{3}...\frac{1}{2016}\)
\(=\frac{1}{1\cdot2...2016}\)