a) Tìm số nguyên tố p chia cho 42 dự r là hợp số. Tìm hộp số r
b)Tim so tu nhien ab sao cho ab2=(a+b)2
a)Tìm 2 số nguyên dương a,b khác nhau biết\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
b) tìm số nguyên tố P biết P chia hết cho 42 dư r là hợp số . tìm r
a, Giả sử tồn tại a,b thỏa mãn đề bài
Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)
\(\Rightarrow\frac{-\left(a-b\right)}{ab}=\frac{1}{a-b}\)
\(\Rightarrow-\left(a-b\right)^2=ab\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow-\left(a-b\right)^2\le0\forall a,b\)
Mà a,b là số nguyên dương => ab > 0
=> Mâu thuẫn
=> Giả sử sai
Vậy không tồn tại a,b thỏa mãn đề
b, https://olm.vn/hoi-dap/question/1231.html
1) tìm số nguyên tố p sao cho các số sau là số nguyên tố
a) p+2,p+10
b) p+10, p+20
2)một số nguyên tố chia cho 30 có số dư là r. Tìm r biết r là hợp số
1. Tìm n sao cho (n+8) chia hết cho (n+1)
2. Tìm số nguyên tố p biết p+8 và p+10 cùng là số nguyên tố
3. Một số nguyên tố p chia cho 42 có số dư là r. Tìm số dư r đó
a) n+8 chia hết cho n+1
(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1
n+1 thuộc U(7)={1;7}
n+1 1 7
n 0 6
Vậy với n thuộc{0;6} thì n+8 chia hết cho n+1
Tick mình nha bạn!
Cho a=42 b=140
a/ phân tích a b ra thừa số nguyên tố
b/ tìm ucUCLN ab
c/ tìm BCNN ab
d/tìm số tự nhien nhỏ nhất chia hết cho ab
e/tìm x thuộcc bc ab và x là số tự nhiên nhỏ nhất có 4 chữ số
Cho nguyên tố p chia cho 42 có số dư r là hợp số. Tìm r.
A. r=29
B. r=15
C. r=27
D. r=25
Đáp án cần chọn là: D
Ta có p=42.a+r=2.3.7.a+r(a,r∈N;0<r<42)
Vì p là số nguyên tố nên r không chia hết cho 2;3;7.
Các hợp số nhỏ hơn 42 không chia hết cho 2 là 9;15;21;25;27;33;35;39
Loại bỏ các số chia hết cho 3 và 7 ta còn số 25.
Vậy r=25.
chia so tu nhien a cho so tu nhien b duoc thuong là 5 và số dư là 4. Tổng của số a và b bằng 148.tìm hai số a bà bchia so tu nhien a cho so tu nhien b duoc thuong là 5 và số dư là 4. Tổng của số a và b bằng 148.tìm hai số a bà b
Câu này làm thế nào
a) 1 số nguyên tố P khi chia cho 42 có số dư Y là hợp số. Tìm số dư Y.
b) Cho b là 1 số nguyên tố lớn hơn 3. Hỏi P2+2018 là số nguyên tố hay hợp số.
a)Ta có
p = 42k + y = 2. 3 .7 . k + r (k,r thuộc N, 0 < y < 42 )
Vì y là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Tìm số nguyên tố p chia cho 42 có số dư r là hợp số.Tìm số dư r