cho (P)=2x2.xác định vị trí của điểm M sao cho qua M vẽ được 2 đường thẳng vuông góc với nhau và cùng tiếp xúc với (P)
Cho đoạn thẳng AB và điểm M cố định thuộc đường thẳng AB. Vẽ về một phía của AB các tia Ax và By vuông góc với AB. Qua M vẽ hai đường thẳng thay đổi luôn vuông góc với nhau và cắt Ax, By theo thứ tự tại C và D. Xác định vị trí các điểm C và D sao cho diện tích tam giác MCD nhỏ nhất
Đặt AC = x; BD = y (x, y > 0)
Ta có \(\Delta ACM\sim\Delta BMD\left(g-g\right)\Rightarrow\frac{AC}{MB}=\frac{AM}{BD}\)
\(\Rightarrow AC.BD=AM.MB=const\Rightarrow xy=c=const\)
\(S_{MCD}=S_{ACDB}-S_{ACM}-S_{MBD}=\frac{\left(x+y\right)\left(AM+MB\right)}{2}-\frac{x.AM}{2}-\frac{y.MB}{2}\)
\(=\frac{x.MB+y.AM}{2}\ge\sqrt{xy.MB.AM}=\sqrt{c^2}=c\)
Dấu bằng xảy ra khi x.MB = y.AM, lại có \(xy=MB.AM\Rightarrow\hept{\begin{cases}x=AM\\y=MB\end{cases}}\)
Vậy giá trị nhỏ nhất của \(S_{CMD}=c\left(đvdt\right)\) xảy ra khi AC = AM; BD = BM.
Cho đoạn thẳng AB và điểm M cố định thuộc đường thẳng AB. Vẽ về một phía của AB các tia Ax và By vuông góc với AB. Qua M vẽ hai đường thẳng thay đổi luôn vuông góc với nhau và cắt Ax, By theo thứ tự tại C và D. Xác định vị trí các điểm C và D sao cho diện tích tam giác MCD nhỏ nhất
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Linhllinh - Toán lớp 9 - Học toán với OnlineMath
cho đoạn thẳng AB có độ dài 2a. vẽ về một phía của AB các tia Ax và By vuông góc với AB. qua trung điểm M của AB có hai đường thẳng thay đổi luôn vuông góc với nhau và cắt tia Ax,By theo thứ tự ở C,D. xác định vị trí của các điểm C,D sao cho MCD có diện tích nhỏ nhất
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Linhllinh - Toán lớp 9 - Học toán với OnlineMath
Do Ax⊥ABAx⊥AB
By⊥ABBy⊥AB
⇒Ax∥By⇒Ax∥By
(Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau)
b) Xét ΔOACΔOAC và ΔOBKΔOBK có:
ˆOAC=ˆOBK=90oOAC^=OBK^=90o
OA=OBOA=OB (do O là trung điểm của AB)
ˆAOC=ˆBOKAOC^=BOK^ (đối đỉnh) và BK=ACBK=AC
⇒ΔOAC=ΔOBK⇒ΔOAC=ΔOBK (g.c.g)
⇒OC=OK⇒OC=OK (hai cạnh tương ứng)
Ta có OD⊥⊥CK và OD đi qua O là trung điểm của CK nên ODOD là đường trung trực của CKCK (đường trung trực của một đoạn thẳng là đường vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó)
c) Do OD là đường trung trực của đoạn CK nên DC=DKDC=DK (tính chất)
Mà DK=DB+BK=DB+ACDK=DB+BK=DB+AC
⇒CD=DB+AC⇒CD=DB+AC (đpcm)
Vẽ hai đường thẳng a, b sao cho a // b. Lấy điểm M nằm ngoài hai đường thẳng a, b. Vẽ đường thẳng c đi qua M và vuông góc với a, với b
Chú ý : Có nhiều hình vẽ khác nhau tùy theo vị trí điểm M được chọn
Cho đường tròn tâm O, bán kính R. Đường thẳng d tiếp xúc với đường tròn (O;R) tại A. Trên đường thẳng d lấy điểm H sao cho AH<R. Qua H kể đường thẳng vuông góc với dường thẳng d, cắt (O;R) tại 2 điể E và B (E nằm giữa B và H ).
a, CMR: Góc ABE bằng góc EAH.
b, Trên đường thẳng d lấy điểm C sao cho H là trung điểm của đoạn AC. Đường thẳng CE cắt AB tại K. CMR tứ giác AHEK nội tiếp được đường tròn.
c, Xác định vị trí của H trên đường thẳng D sao cho AB=R√3
Vẽ hai đương thẳng a và b sao cho a//b
Lấy điểm M nằm ngoài hai đường thẳng a, b
Vẽ đường c đi qua M và vuông góc với a, với b
Chú ý: có nhiều hình vẽ khác nhau tuỳ theo vị trí điểm M được chọn
Bài 17 : Vẽ hai đường thẳng a , b sao cho a // b . Lấy điểm M nằm ngoài hai đường thẳng a , b . Vẽ đường c đi qua M và vuông góc với a , với b . Chú ý : Có nhiều hình vẽ khác nhau tùy theo vị trí điểm M đã được chọn .
các bạn ơi k giùm mk nhé ai k thì nhắn tin cho mk mk sẽ k lại
cho đường tròn (O;R) và đường thẳng d cắt đường tròn tại 2 điểm A, B. từ 1 điểm M trên đường thẳng d và ngoài (O), d không qua tâm O vẽ 2 tiếp tuyến MN, MP với đường tròn (O) (N,P là 2 tiếp điểm)
c, xác định vị trí của M lưu động trên đường thẳng d sao cho tứ giác MNOP là hình vuông
d, chứng minh rằng tâm I của dường tròn nội tiếp tam giác MNP lưu dộngd trên 1 đường cố định khi M lưu đọng trên đường thẳng d
Cho (o,R) tiếp xúc ngoài với (O',R') tại A, hai cát tuyến MAM' và NAN' quay quanh A và vuông góc với nhau (M,N thuộc (O), N',M' thuộc (O')
a, MM'2+NN'2 không đổi
b, NM' đi qua điểm K cố định. K là trung điểm MN' chuyển động trên 1 đường cố định
c, kẻ AH vuông góc MN'. tìm vị trí của đường thẳng MN' để đoạn thẳng AH lớn nhất