3n+15 chia hết cho n+4 biết n lớn hơn 0
Sao bạn đăng nhiều thế !
hoa mắt thì làm sao giải cho bạn được
Bài 1:
(2x -1) (3y + 2) = 12b
\(x=\frac{12b+3y+2}{2\left(3y+2\right)}\)
\(y=\frac{2\left(6b-2x+1\right)}{3\left(2x-1\right)}\)
(4x + 1) (2y-3) = -81
\(x=-\frac{y+39}{2\left(2y-3\right)}\)
\(y=\frac{3\left(2x-13\right)}{4x+1}\)
Tìm n :
d,n+15 chia hết cho n-3(n>5)
f,18-2n chia hết cho n +3(9 lớn hơn hoặc bằng n)
g,3n+13 chia hết cho 2n+3(9 lớn hơn hoặc bằng n)
a) n+15 chia hết cho n-3
=> n-3+18 chia hết cho n-3
=> 18 chia hết cho n-3
Vi n>5 => n=9;18
b) câu hỏi tương tự
c) 3n+13 chia hết cho 2n+3
=> 6n+26 chia hết cho 2n+3
=> 6n+9+17 chia hết cho 2n+3
=> 3.(2n+3)+17 chia hết cho 2n+3
=> 17 chia hết cho 2n+3
=> 2n+3=17
=> 2n=14
=> n=7
Tìm số tự nhiên n biết:
a , ( n+ 8 ) chia het ( n + 3 )
b , (15 - 4n ) chia hết cho n ( với n bé hơn 4 )
c , (n + 13 ) chia hết cho ( n - 5 ) ( với n lớn hơn 5 )
đ , ( 15 - 2n ) chia hết cho ( n+1 ) ( với n bé hơn hoặc bằng 7 )
a) ta có n+8=(n+3)+5 chia hết cho n+3
mà (n+3)chia hết cho n+3
=> 5 chia hết cho n+3
mà 5 chia hết cho 1;5
=> n+3 = 5 => n = 2
n+3 = 1 loại
KL n=2
Tìm n thuộc N biết
a) 3n+2 chia hết cho n-1 (n lớn hơn 1)
b) n2+3 chia hết cho n2-2
c) n2+2n+7 chia hết cho n+2 (n lớn hơn hoặc bằng 2)
3n3n ⋮⋮ n−1n−1
⇒3(n−1)+3⇒3(n−1)+3 ⋮⋮ n−1n−1
Do 3(n−1)3(n−1) ⋮⋮ n−1⇒3n−1⇒3 ⋮⋮ n−1n−1
⇒n−1∈Ư(3)={±1;±3}⇒n−1∈Ư(3)={±1;±3}
Với n−1=−1⇒n=0n−1=−1⇒n=0
n−1=1⇒n=2n−1=1⇒n=2
n−1=−3⇒n=−2n−1=−3⇒n=−2
n−1=3⇒n=4n−1=3⇒n=4
Vậy n={0;±2;4}
Tổng của các n sao cho (3n-20) chia hết cho (n+4) là:
A.0 B.4 C.12 D.15
Lời giải:
$3n-20\vdots n+4$
$\Rightarrow 3(n+4)-32\vdots n+4$
$\Rightarrow 32\vdots n+4$
$\Rightarrow n+4$ là ước của $32$.
$\Rightarrow n+4\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 8; \pm 16; \pm 32\right\}$
$\Rightarrow n\in\left\{-4; -3; -5; -2; -6; 0; -8; 4; -12; 12; -20; 28; -36\right\}$
Tổng các số n thỏa mãn là: -52
1, tìm số nguyên n biết
a, n+3 chia hết cho n-1
b, 2n-1 chia hết cho n+2
2, tìm số nguyên n sao cho
a, 3n+2 chia hết cho n-1
b, 3n+24 chia hết cho n-4
c, n^2+5 chia hết cho n+1
Tìm n thuộc N để n+19 chia hết cho n+2
3n+15 chia hết cho n+1
n+8 chia hết cho 3n+1
n+19 chia hết cho 2n+4
Ta có n+19=n+2+17
Để n+19 chia hết cho n+2 thì n+2+17 chia hết cho n+2
n thuộc N => n+2 thuộc N
=> n+2 thuộc Ư 917)={1;17}
Nếu n+2=1 => n=-3(ktm)
Nếu n+2=17 => n=15 (tm)
\(3x+15⋮n+1\)
\(3\left(x+1\right)+12⋮n+1\)
Vì \(3\left(n+1\right)⋮n+1\)
\(\Rightarrow12⋮n+1\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự xét bảng nha bn
1.tìm ba số tự nhiên liên tiếp biết tích của hai số sau lớn hơn tích của hai số đầu là 50
2.Chứng minh rằng biểu thức n(3n-4)-3n(n+1) luôn chia hết cho 7 với mọi số nguyênn
Tìm n thuộc N
a, n+3 chia hết cho n
b,35 - 12n chia hết cho n ( n < 3)
c, 16 - 3n chia hết cho n + 4 ( n < 6 )
d,5n + 2 chia hết cho 9 - 2n ( n < 5 )
e , 6n + 9 chia hết cho 4n - 1 ( n lớn hơn hoặc bằng 1 )
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }