abcd + a + b + c + d = 1990
Tìm a,b,c,d và abcd
Tìm chữ số thích hợp:
a, abc + ab + a = 340
b, abcd + abc + ab + a = 2230
c, abcd + a + b + c + d = 1990
d, bab - ab1 = 194
\(a.a=3,b=0,c=7\)
\(b.a=2,b=0,c=0,d=8\)
\(c.a=1,b=9,c=6,d=7\)
\(d.a,b\in\left\{\varnothing\right\}\) (tức là không có số nào thỏa mãn đề bài)
49/60= 1/60+1/60+1/60+1/60+.....+1/60.
Vì 1/60 > 1/11; 1/60>1/12;... nên 1/11+1/12+1/13+1/14+...+1/25 > 1/60
Tìm chữ số thích hợp:
a, abc + ab + a = 340
b, abcd + abc + ab + a = 2230
c, abcd + a + b + c + d = 1990
d, bab - ab1 = 194
a, 307+30+3=340
b, 2008+200+20+2
c, 1877+1+8+7+7=1900
Cho mik hỏi câu d là ab1 hay là aba
Bạn nguyễn mai trang, câu d là ab1, ko phải là aba
abcd + a + b + c + d = 1990
gấp nhé
Tìm max của biểu thức
A=\(\frac{1}{a^4+b^4+c^4+abcd}+\frac{1}{b^4+c^4+d^4+abcd}+\frac{1}{c^4+d^4+a^4+abcd}+\frac{1}{d^4+a^4+b^4+abcd}\)
với mọi số thực a,b,c,d và abcd=1
Ta có \(a^2+b^2+c^2\ge ab+bc+ac\)
Áp dụng
=> \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)\)
=> \(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)
Khi đó
\(VT\le\frac{1}{a+b+c+d}\left(\frac{1}{abc}+\frac{1}{bcd}+\frac{1}{cda}+\frac{1}{dab}\right)\)
=> \(VT\le\frac{1}{a+b+c+d}.\frac{a+b+c+d}{abcd}=1\)
Dấu bằng xảy ra khi \(a=b=c=d=1\)
Vậy MaxA=1 khi a=b=c=d=1
a;b;c la so thuc thi chua chac a;b;c > 0 dau
dù a,b,c là số thực nhưng các bất đẳng tớ sử dụng đều áp dùng cho bậc chẵn nên không ảnh hưởng
Tìm abcd biết: a+b=c*d và c+d=a*b
Tìm giá trị lớn nhất của biểu thức :
\(\frac{1}{a^4+b^4+c^4+abcd}+\frac{1}{b^4+c^4+d^4+abcd}+\frac{1}{c^4+d^4+a^4+abcd}+\frac{1}{d^4+a^4+b^4+abcd}\)
biết a.b.c.d là các số thực dương và abcd=1
Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath
Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2
\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )
Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc
\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
Tương tự , b4 + c4 + d4 \(\ge\)bcd ( b + c + d ) ; a4 + b4 + d4 \(\ge\)abd ( a + b + d ) ; c4 + d4 + a4 \(\ge\)acd ( a + c + d )
\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\); \(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)
\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
Cộng từng vế theo vế , ta được :
A \(\le\)1 ( đặt A = biểu thức ấy nhé )
Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1
Tìm số nguyên a, b, c, d
abcd + a = 1999
abcd + b = 999
abcd + c = 99
abcd + d = 9
Tìm abcd biết: a) abcd + a + b + c + d= 2022
b) abcd + a + b + c + d=8782
Tìm các số nguyên a, b, c, d thỏa mãn đồng thời các hệ thức sau:
a) abcd-a=2013
b)abcd-b=2005
c) abcd-c=2017
d) abcd-d=2019
Ta có:
(abcd-c)-(abcd-b)=2017-2005=12
=>b-c=12
Vì b, c là các chữ số nên hiêu chúng lớn nhất chỉ là 9-0=9
Mà 12>9 => Vô lý
Như vậy không tồn tại b, c và cũng không tồn tại a,d
Vậy không có a, b, c, d thỏa mãn
Cách khác:
Ta có: abcd-d=abc0 không có tận cùng là 9
-> Vô lý