Cho biểu thức:
\(Q=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a) Rút gọn Q
b) Tìm GTNN của Q
c) Tìm các số nguyên x để \(\frac{3Q}{\sqrt{x}}\) nhận giá trị nguyên
Giúp mk vs ạ, mình cần gấp
Cho biểu thức : \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tìm GTNN của P.
c, Tìm x để biểu thức \(Q=\frac{2\sqrt{x}}{P}\) nhận giá trị là số nguyên.
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
Cho biểu thức \(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}-2}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
a) Rút gọn biểu thức A
b) Tìm x nguyên để A nhận giá trị nguyên
c) Tìm GTNN của A
Câu 1: Cho biểu thức:\(D=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Rút gọn biểu thức b)Tìm x để D < 1 c) Tìm GT nguyên của x để D thuộc Z
Câu 2: Cho biểu thức: \(P=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a) Rút gọn P b) Tính GT của P biết \(x=\frac{2}{2+\sqrt{3}}\)
Câu 3: Cho biểu thức: \(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Tìm GT của x để A xác định b) Rút gọn A c) Tìm x sao cho A > 1
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho biểu thức: M = 1 - \(\left[\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right].\left[\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
a. Tìm giá trị của x để M có nghĩa, rút gọn M
b. Tìm giá trị nhỏ nhất của biểu thức \(\left(2000-M\right)\)khi x\(\ge4\)
Tìm các số nguyên z để giá trị của \(M\in N\)
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs
cho biểu thức: P=\(\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
với \(x\ge0;x\ne1\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên
c) tìm GTNN của P và giá trị tương ứng của x
a/ \(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(=\left[\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right]:\left[\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}+1\right)=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b/ Ta có: \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Để \(P\in Z\) thì \(\left(\sqrt{x}+1\right)\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
+ Với \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
+ Với \(\sqrt{x}+1=-1\Rightarrow\sqrt{x}=-2\left(vn\right)\)
+ Với \(\sqrt{x}+1=2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)(loại)
+ Với \(\sqrt{x}+1=-2\Rightarrow\sqrt{x}=-3\left(vn\right)\)
Vậy x = 0 thì P nguyên
a) \(P=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
\(=\frac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{x-1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Để P nguyên thì \(\sqrt{x}+1\in\left\{1;2\right\}\Leftrightarrow x\in\left\{0\right\}\) (Vì x khác 1 - điều kiện)
c) \(\sqrt{x}+1\ge1\Leftrightarrow\frac{2}{\sqrt{x}+1}\le\frac{1}{2}\Leftrightarrow1-\frac{2}{\sqrt{x}+1}\ge\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{2}\). Dấu đẳng thức xảy ra khi x = 0
Vậy Min P = 1/2 <=> x = 0
Sửa lại câu c)
\(P=1-\frac{2}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}+1\ge1\Leftrightarrow\frac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\frac{2}{\sqrt{x}+1}\le-1\)
Dấu "=" xảy ra khi x = 0
Vậy Min P = -1 khi và chỉ khi x = 0