Cho A = (x+y+z)^3-x^3-y^3-z^3 với x,y,z thuộc Z.CMR A chia hết cho 6
Câu :
1, Cho A = (x+y+z)3-x3-y3-z3 với x,y,z thuộc Z
CMR: A chia hết cho 6
Cho x,y,z thuộc Z và x+y+z chia hết cho 6 . Chứng minh : x3+y3+z3 chia hết cho 6
sao lại chai hết cho 6 ????????
hả????????????????
hả?????????????????????????
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
tìm hằng số a để x^3+y^3+z^3 + axyz chia hết cho x+y+z với mọi x;y;z thuộc Q
cho x,y,z thuộc Z.CM:(x+y+z)^2+x^3-y^3-z^3 chia hết cho 6
Tìm câu hỏi tương tự cũng có á bạn, hoặc tìm trên google í
CMR: A = x3y + xy3 chia hết cho 6 với x, y thuộc Z
Cho x>y>z.CMR:(x-y)^3+(y-z)^3+(z-x)^3<0.
Sorry mink ko biet lm bài này xin lỗi bn
Với X=Y=Z thì thấy thỏa mãn
Xét trường hợp X>Y>Z :
Với X>Y thì suy X+Y>Y+Y=2Ynên X+Y-Z>2Z-Z=Z
=>( X+Y-Z)^3>Z^3
Tượng tự ta có :
(Y+Z-X)^3>X^3và(Z+X-Y)^3>Y^3
Từ đó :
=> VT>VP nên vô lý
Vậy X=Y=Z
Cho x>y>z.CMR(x-y)^3+(y-z)^3+(z-x)^3<0
Tìm x,y thuộc Z biết
a) 4x-xy+2y+3
b) 3y-xy-2x-5=0
c) 2xy-x-y=100
bài 2 cho a,b thuộc z biết
ab-ac+bc-c^2=-1
chứng minh a và b là 2 số đối nhau
bài 3. cho a,b,c thuộc Z và a+c+c=6
chứng minh a^3+b^3+c^3 chia hết cho 6
bài 4 cho x,y thuộc Z chứng minh nếu 6x+11y chia 31 thì x+7y chia hết cho 31
bài 5 chứng minh với mọi n thuộc Z thì (n-1)(n+2)+12 ko chia hết cho 9
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?