Chứng minh rằng 9^9^9^9 - 9^9^9 chia hết cho 10
Giúp mình với ạ
Chứng minh rằng:
a) 8^17 - 2^18 chia hết cho 14
b) 10^9 + 10^8 + 10^7 chia hết cho 222
c) 81^7 - 27^9 - 9^13 chia hết cho 45
Giải giúp mình nha, mình cám ơn. ^^
a. Cho số A = 101112131415...8586878889, chứng minh rằng số A chia hết cho 9.
b. Chứng tỏ rằng với mọi số tự nhiên n thì: 7n + 8 và 8n + 9 là 2 số nguyên tố cùng nhau.
giải giúp mình với ạ
b: Gọi d=ƯCLN(7n+8;8n+9)
=>\(\begin{cases}7n+8\vdots d\\ 8n+9\vdots d\end{cases}\Rightarrow\begin{cases}56n+64\vdots d\\ 56n+63\vdots d\end{cases}\)
=>56n+64-56n-63⋮d
=>1⋮d
=>d=1
=>ƯCLN(7n+8;8n+9)=1
=>7n+8 và 8n+9 là hai số nguyên tố cùng nhau
a: Trong các số từ 10 đến 19, có 10 số có chữ số hàng chục là 1; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 20 đến 29, có 10 số có chữ số hàng chục là 2; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 30 đến 39, có 10 số có chữ số hàng chục là 3; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 40 đến 49, có 10 số có chữ số hàng chục là 4; các chữ số hàng đơn vị là các số từ 0 đến 9
...
Trong các số từ 80 đến 89, có 10 số có chữ số hàng chục là 8; các chữ số hàng đơn vị là các số từ 0 đến 9
Tổng của các chữ số hàng chục là:
\(10\left(1+2+\cdots+8\right)=10\left(8\cdot\frac92\right)=10\cdot4\cdot9=40\cdot9=360\)
Tổng của các chữ số hàng đơn vị là:
\(\left(0+1+2+\cdots+9\right)\times\left(8-1+1\right)=8\times9\times\frac{10}{2}=8\times5\times9=40\times9=360\)
Tổng các chữ số trong số A là:
360+360=720⋮9
=>A⋮9
Chứng Minh Rằng :
a, ab - ba chia hết cho 9
b, abc - bca chia hết cho 9
c, 10^9 + 10^8 + 10^7 chia hết cho 555
d,81^7 - 27^9 - 9^13 chia hết cho 45
Giup mk với nha. Thanks
a) Ta có : ab - ba
=> a . 10 + b - b . 10 + a
=> ( a . 10 ) - a + ( 10 . b ) - b
=> 9. a + 9 . b
=> 9 . ( a + b ) chia hết cho 9 ( đpcm)
đpcm là điều phải chứng minh nha bạn
Câu b ban làm tương nha
Chúc bạn học giỏi
Cho (10k - 1) chia hết cho 9 với k > 1
Chứng minh rằng
a) (102k - 1) chia hết cho 9
b) (103k - 1) chia hết cho 9
Chứng minh rằng
a) 81^7-27^9-9^13 chia hết cho 45
b)10^9+10^8+10^7 chia hết cho 555
Chứng minh rằng n(3n^2 + 2022) chia hết cho 9 với mọi số nguyên n
giúp mình với ạ
A=3n(n^2+674)
TH1: n=3k
=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9
TH2: n=3k+1
=>A=3(3k+1)(9k^2+6k+1+674)
=3(3k+1)(9k^2+6k+675)
=9(3k+1)(3k^2+2k+225) chia hết cho 9
TH3: n=3k+2
=>A=3(3k+2)(9k^2+12k+4+674)
=3(3k+2)(9k^2+12k+678)
=9(3k+2)(3k^2+4k+226) chia hết cho 9
Giúp mình vs nhanh nha!!!
C1 Chứng minh rằng với mọi n thuộc N thì ( n^2 - n ) chia hết cho 9
C2 Tìm số dư của k = 10^9 + 9^10 + 6^13 + 3^16 + 1 nếu : 9
Nhớ làm đầy đủ cho mình nha!!
THANK YOU VERY MUCH@@
Chứng minh rằng:
a,n(n+1)(2n+1) chia hết cho 6.
b,10^9+2 chia hết cho 3.
c,10^10-1 chia hết cho 9.
d,10^8-1 chia hết cho 9.
e,10^8+8 chia hết cho 9.
a) - Xét trường hợp chia hết cho 2
+ Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.
- Xét trường hợp chia hết cho 3.
+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
Vậy n.(n+1).(2n+1) chia hết cho 2.
Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)
b) 10^9 + 2 = 100.....02.
Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)
c) 10^10 - 1 = 99...99
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
d) 10^8 - 1 = 99...9
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
E) 10^8 + 8 = 10...08
Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)
Chứng minh rằng:
a) 29- 1 chia hết cho 73
b) 56 - 104 chia hết cho 9
Khó quá! Mình chưa hiểu dạng này! Giúp mình với nhé! Mình cảm ơn!