Thực hiên phép tính :
\(\frac{2^5.6^3}{8^2.9^2}\)
thực hiên phép tính:
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{1}{1+x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
thực hiên phép tính
77.(-3).8+2.(-12).3+(-24).20
77.(-3).8+2.(-12).3+(-24).20
= 77 . ( - 24 ) + ( - 24 ) . 3 + ( - 24 ) . 20
= ( - 24 ) . ( 77 + 3 + 20 )
= ( - 24 ) . 100
= - 2400
77 . ( - 3 ) . 8 + 2 . ( - 12 ) . 3 + ( - 24 ) . 20
= 77 . ( - 24 ) + ( - 24 ) . 3 + ( - 24 ) . 20
= - 24 . ( 77 + 3 + 20 )
= - 24 . 100
= - 2400
TÍNH GIÁ TRỊ CÁC BIỂU THỨC:
a) \(A=\frac{25^3.5^5}{6.5^{10}}\)
b) \(B=\frac{2^5.6^3}{8^2.9^2}\)
C) \(C=\frac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}\)
\(A=\frac{25^3.5^5}{6.5^{10}}=\frac{\left(5^2\right)^3.5^5}{6.5^{10}}=\frac{5^6.5^5}{6.5^{10}}=\frac{5^{11}}{6.5^{10}}=\frac{5}{6}\)
\(B=\frac{2^5.6^3}{8^2.9^2}=\frac{2^5.2^3.3^3}{\left(2^3\right)^2.\left(3^2\right)^2}=\frac{2^8.3^3}{2^6.3^4}=\frac{4}{3}\)
\(A=\frac{25^3.5^3}{6.5^{10}}=\frac{5^6.5^3}{6.5^{10}}=\frac{5^9}{6.5.5^9}=\frac{1}{30}\)
\(B=\frac{2^5.6^3}{8^2.9^2}=\frac{2^5.2^3.3^3}{2^6.3^4}=\frac{2^8.3^3}{2^6.3^4}=\frac{2^2}{3}=\frac{4}{3}\)
\(C=\frac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}=\frac{5^3\left(3^3+3^2-1\right)}{6^3\left(3^3+3^2-1\right)}=\frac{5^3}{6^3}\)
Thực hiện phép tính: \(A=\frac{3^{15}.2^{22}+6^{16}.4^4}{2.9^9.8^7-7.27^5.2^{23}}\)
Thực hiên các phép tính sau bằng cách nhanh nhất
2 x 3 x 4 x 8 x 50 x 25 x 125
2 x 3 x 4 x 8 x 50 x 25 x 125
= 3 x 2 x 4 x 50 x 8 x 25 x 125
= 3 x (2 x 50) x (4 x 25) x (8 x 125)
= 30 000 000.
Thực hiên phép tinh
\(a=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
=2^12.3^4.(3-1)/2^12.3^5(3+1)-5^10.7^3.(1-7)/5^9.7^3.(1+2^3)
2/3.4-5.(-6)/9
=1/6-(-10/3)
1/6+10/3
7/2
What ???????????????
Thực hiện phép tính sau:
a,\(\frac{2181.729+243.81.27}{3^2.9^2.243+18.54.162.9+723.729}\)
b,\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{99.100}\)
c,\(\frac{5.4^{15}-9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
b) \(\frac{1}{2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(1-\frac{1}{100}=\frac{99}{100}\)
thực hiện phép tính sau \(\frac{\text{2181.729+243.81.27}}{\text{3^2.9^2.234+18.54.162.9+723.729}}\)
thực hiên phép tính sau một cách hợp lí
1+(-2)+(-3)+4+5+(-6)+(-7)+8+...+99-100 -101-102+103
Đặt A = 1 + ( - 2 ) + ( - 3 ) + 4 + 5 + ( - 6 ) + ( - 7 ) + 8 + ... + 99 - 100 - 101 - 102 + 103
=> A = [ 1 + ( - 2 ) + ( - 3 ) + 4 ] + [ 5 + ( - 6 ) + ( - 7 ) + 8 ] + .... + [ 99 - 100 - 101 + 102 ] + 103
=> A = 0 + 0 + 0 + .... + 103
=> A = 103
Vậy A = 103