Tính a(b + c) và ab + ac khi a = -2, b = 14, c = -4.
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho a2+b2+c2=14
a+b+c=6
Tính ab+ac+bc
Ta có: a+b+c=6
=> (a+b+c)2=62
=> a2+b2+c2+2(ab+bc+ac)=36
=>: 14+2(ab+bc+ac)=36 (vì a2+b2+c2=14)
=> 2(ab+ac+bc) =36-14
=> 2(ab+bc+ac) =22
=> ab+ac+bc =22:2=11
Giải: Từ a2 + b2 + c2 = 14 => (a2 + b2 + c2)2 = 196
a4 + b4 + c4 + 2a2b2 + 2b2 c2 + 2a2c2 = 196
B = a4 + b4 + c4 = 196 – 2 ( a2b2 + b2 c2 + a2c2 )
Từ a + b + c = 0 => ( a + b + c )2 = 0
=> a2 + b2 + c2 + 2( ab + bc + ac) = 0
ab + bc + ac =
(ab + bc + ac)2 = 49
a2b2 + b2c2 + a2c2 + 2ab2c + 2a2bc + 2abc2 = 49
a2b2 + b2c2 + a2c2 = 49 – 2abc(a + b+ c) = 49
0
Vậy B = 196 – 2. 49 = 196 – 98 = 98
cấm ai coppy của mik nhé !
Cho các số thựa dương a,b,c thỏa mãn a2+b2+c2=14.CMR:
\(\frac{a+b}{4+bc}+\frac{b+c}{4+ac}+\frac{c+a}{4+ab}\ge\frac{3}{2}\)
Cho đường tròn (O) và điểm A ở bên ngoài đường tròn. Từ A vẽ tiếp tuyến AB (B là tiếp tuyến) và cắt bất kỳ ACD (C nằm giữa A và D) Gọi I là trung điểm của CD
a. 4 điểm A B C và I cùng thuộc 1 đường tròn
b. AC - AD = AI2 - IC2
c. Tính AC, AD không đổi khi C di chuyển trên đường tròn
cho a, b, c= 0 và a^2 +b^2 +c^2 = 14 tính a^4+ b^4 +c^4
a+b+c = 0
<=> (a+b+c)^2 = 0
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0
<=>14 + 2(ab + ac + bc) = 0
<=> 2(ab + ac + bc) = -14
<=> ab + ac + bc = -7
=> (ab + ac + bc)^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49
Ta có: a^2 + b^2 + c^2 = 14
=> (a^2 + b^2 + c^2)^2 = 14^2
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196
<=> a^4 + b^4 + c^4 + 2 . 49 = 196
<=> a^4 + b^4 + c^4 + 98 = 196
<=> a^4 + b^4 + c^4 = 98
Tính \(\frac{ab+c}{\left(a+b\right)^2}\)*\(\frac{bc+a}{\left(b+c\right)^2}\)*\(\frac{ac+b}{\left(a+c\right)^2}\)khi a+b+c=1 và a khác -b;b khác -c; c khác -a
a/ Cho a,b,c thỏa mãn : a+b+c=0 và a^2+b^2+c^2=14
tính A khi A= a^4+b^4+c^4
b/ cho a,b,c khác 0. Tính D= x^2011+y^2011+z^2011
biết x,y,z thỏa mãn :\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
Cho a+b+c=0 và a^2+b^2+c^2=14.Tính P=a^4+b^4+c^4
Ta có
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0^2\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Mà \(a^2+b^2+c^2=14\)
\(\Rightarrow14+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-14\Rightarrow ab+bc+ca=-7\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-7\right)^2\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)
Mà \(a+b+c=0\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)(1)
Ta lại có
\(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(14\right)^2\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)
\(\Rightarrow a^4+b^4+c^4=196-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(2)
Thay (1) vào (2)
\(a^4+b^4+c^4=196-2.49=98\)
nha - Cảm ơn
CHÚC BẠN HỌC TỐT
cho abc=8 và 1/(a2) +1/(b2) +1/(c^2)=3/4 (a,b,c>0) tính T=bc/a+ac/b+ab/c
Ta có \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{\left(abc\right)^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{64}=\frac{3}{4}\)
\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2=\frac{3.64}{4}=48\)
Do đó \(T=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{b^2c^2+c^2a^2+a^2b^2}{abc}=\frac{48}{8}=6\)