Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
free fire
Xem chi tiết
Bình Lâm Thục
Xem chi tiết
Đoàn Thị Thu Hương
30 tháng 8 2015 lúc 16:24

Ta có: a+b+c=6

 =>     (a+b+c)2=62

  =>   a2+b2+c2+2(ab+bc+ac)=36

=>:    14+2(ab+bc+ac)=36 (vì a2+b2+c2=14)

 =>        2(ab+ac+bc)  =36-14

  =>      2(ab+bc+ac)  =22

  =>     ab+ac+bc  =22:2=11

 

OoO Kún Chảnh OoO
30 tháng 8 2015 lúc 16:24

Giải: Từ a2 + b2 + c2 = 14 => (a2 + b2 + c2)2 = 196 
a4 + b4 + c4 + 2a2b2 + 2b2 c2 + 2a2c2 = 196
B = a4 + b4 + c4 = 196 – 2 ( a2b2 + b2 c2 + a2c2 )
Từ a + b + c = 0 => ( a + b + c )2 = 0
=> a2 + b2 + c2 + 2( ab + bc + ac) = 0
ab + bc + ac = 
(ab + bc + ac)2 = 49
a2b2 + b2c2 + a2c2 + 2ab2c + 2a2bc + 2abc2 = 49
a2b2 + b2c2 + a2c2 = 49 – 2abc(a + b+ c) = 49
0
Vậy B = 196 – 2. 49 = 196 – 98 = 98 

cấm ai coppy của mik nhé !

Nguyễn Hưng Phát
Xem chi tiết
Phan Lâm Nhật Minh
Xem chi tiết
Mỹ Ngọc Trần
Xem chi tiết
fan FA
1 tháng 8 2016 lúc 17:12

a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

Nguyễn Quỳnh Chi
1 tháng 8 2016 lúc 17:13

a+b+c=0 nha bạn!

Mahoustakai Precure
4 tháng 7 2017 lúc 13:33

a+b+c=0

k mk nhe !

Nguyễn Lưu Hương
Xem chi tiết
Nguyễn Thị Hương Trà
Xem chi tiết
o0o đồ khùng o0o
6 tháng 1 2017 lúc 13:27

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

Võ Trung Kiên
Xem chi tiết
Đỗ Thanh Tùng
4 tháng 7 2016 lúc 22:26

Ta có 

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0^2\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Mà \(a^2+b^2+c^2=14\)

\(\Rightarrow14+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-14\Rightarrow ab+bc+ca=-7\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-7\right)^2\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

Mà \(a+b+c=0\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)(1)

Ta lại có 

\(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(14\right)^2\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)

\(\Rightarrow a^4+b^4+c^4=196-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(2)

Thay (1) vào (2) 

\(a^4+b^4+c^4=196-2.49=98\)

nha - Cảm ơn 

CHÚC BẠN HỌC TỐT

Bảo Uyên Ngô
Xem chi tiết
Thiên An
23 tháng 7 2017 lúc 22:03

Ta có  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{\left(abc\right)^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{64}=\frac{3}{4}\)

\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2=\frac{3.64}{4}=48\)

Do đó  \(T=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{b^2c^2+c^2a^2+a^2b^2}{abc}=\frac{48}{8}=6\)