1+2+3+4+...+3999+4000
Rút gọn: 4000/1+3999/2+3998/3+...+1/4000 / 1/2+1/3+1/4+...+1/4001
A=[(3999/2+1)+(3998/3+1)+...+(1/4000+1)+1]/(1/2+1/3+...+1/4001)
A=(4001/2+4001/3+...+4001/4001)/(1/2+1/3+...+1/4001)
A=[4001(1/2+1/3+...+1/4001)]/(1/2+1/3+...+1/4001)
A=4001
Vậy A=4001
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4000}}{\frac{3999}{1}+\frac{3998}{2}+\frac{3997}{3}+...+\frac{1}{3999}}\) = ?
\(C=\frac{T}{M}\)
\(M=\left(1+\frac{3998}{2}\right)+\left(1+\frac{3997}{3}\right)+.....+\left(1+\frac{1}{3999}\right)+\frac{4000}{4000}\)
\(=\frac{4000}{2}+\frac{4000}{3}+......+\frac{4000}{3999}+\frac{4000}{4000}=4000.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4000}\right)\)
\(=4000.T\)
\(C=\frac{T}{M}=\frac{T}{4000T}=\frac{1}{4000}\)
\(\frac{\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+...+\frac{1}{4000}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4001}}\)=?
Rút gọn
\(B=\frac{\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+...+\frac{1}{4000}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4001}}\)
1) Tính A/B biết:
A = 4000/1+3999/2+3998/3+...+1/4000
B = 1/2+1/3+1/4+...+1/4001
2) So sánh
A=(2014/2015)+(2015/2014) ; B=666665/333333
! ) A = (3999 /2 +1 ) + ( 3998/ 3 + 1 ) + ( 3997 / 4 + 1 ) +...+ ( 1/ 4000 + 1 ) + 1
(Ta lấy 4000/1 = 4000 rải đều 1, 1 ,1 cho 3999 phân số và dư lại 1 = 4001/4001 )
= 4001 /2 + 4001 / 3 + 4001 /4 + ...+ 4001 /4000 + 4001 / 4001
= 4001 ( 1/2 + 1/3 + 1/4 +..+ 1/ 4001 ) vay A: B = 4001
\(y=\frac{\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+...+\frac{1}{4000}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4001}}=?\)
Đặt A=\(\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+........+\frac{1}{4000}\)
A=\(1+\left(1+\frac{3999}{2}\right)+\left(1+\frac{3998}{3}\right)+........+\left(1+\frac{1}{4000}\right)\)
A=\(\frac{4001}{4001}+\frac{4001}{2}+\frac{4001}{3}+...........+\frac{4001}{4000}\)
A=\(4001.\left(\frac{1}{2}+\frac{1}{3}+........+\frac{1}{4000}+\frac{1}{4001}\right)\)
=>\(y=\frac{4001.\left(\frac{1}{2}+\frac{1}{3}+........+\frac{1}{4001}\right)}{\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{4001}}\)
=>\(y=4001\)
4000/3000+3999/2999.4001/3001+3989/2989.4002/3002
A=4000/3000+3999/2999.4001/3001+3989/2989.4002/3002+...+0
5999 – 2000 + 4999 – 3000 + 3999 – 4000 + 2999 – 5000 + 1999 – 100
Trình bày lời giải nhé
5999 - 5000 + 4999 - 4000 + 3999 - 3000 + 2999 - 2000 + 1999 - 100
= 999 + 999 + 999 + 999 + 1899
= 999 x 4 + 1899
= 5895