Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uzumaki Naruto
Xem chi tiết
lê thị hồng nhung
Xem chi tiết
Lê Chí Hùng
20 tháng 6 2015 lúc 15:49

Phân tích ra ta được: 4n2 +4n+1+8n+9

                          =  4n2+4n+8n+10

                          =4n(n+1) +8n + 8  +2

   mà 4n(n+1) chia hết cho 8 (n(n+1) là tích của hai số tự nhiên liên tiếp); 8n và 8 chiaheets cho 8. Vậy còn dư 2

Nên biểu thức không chia hết cho 8 với mọi n

Hà Ngân Trần
Xem chi tiết
Hatake Kakashi
Xem chi tiết
Binh Tran
Xem chi tiết
nana
Xem chi tiết
Khánh Vy
9 tháng 3 2019 lúc 21:00

a, Ta có : 5n+2 + 26.5n + 82n+1 = 25.5n + 26.5n + 8.64n = 51.5n + 8.64n

Vì \(64\equiv5\) ( mod 59 ) nên \(64^n\equiv5^n\) ( mod 59 )

Do đó : \(5^{n+2}+26.5^n+8^{2n+1}\equiv51.5^n+8.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv59.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv0\) ( mod 59 ) hay \(\left(5^{n+2}+26.5^n+8^{2n+1}\right)⋮59̸\)

b, Ta có : \(168=2^3.3.7\)

- Vì \(3^{2n}+7=9^n+7\equiv1+7\)( mod 8 ) hay \(3^{2n}+7\equiv0\) ( mod 8 )

\(\Rightarrow\left(3^{2n}+7\right)⋮8.\)Mặt khác : \(4^{2n}=16^n⋮8\)nên \(\left(4^{2n}-3^{2n}-7\right)⋮8\)     (1)

- Vì \(4^{2n}\equiv1\)( mod 3 ) ; \(7\equiv1\)( mod 3 ) \(\Rightarrow4^{2n}-7\equiv0\) ( mod 3 ) 

Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮3\)   (2)

- Vì \(4^{2n}=16^n\equiv2^n\) ( mod 7 ) ; \(3^{2n}=9^n\equiv2^n\) ( mod 7 )

nên \(4^{2n}-3^{2n}\equiv0\) ( mod 7 ). Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮7\) (3)

Từ (1);(2);(3) và ( 8,3,7 ) = 1 nên \(\left(4^{2n}-3^{2n}-7\right)⋮8.3.7\)

hay \(\left(4^{2n}-3^{2n}-7\right)⋮168\) \(\left(n\ge1\right)\)

Nguyễn Việt Anh
13 tháng 4 2020 lúc 20:38

n lớn hơn 1 nhé

Khách vãng lai đã xóa
Tiểu Thư họ Nguyễn
Xem chi tiết
Trần Thùy Linh A1
Xem chi tiết
chess15
18 tháng 10 2015 lúc 11:07

Ta có:

2 chia hết cho 2; 4 chia hết cho 2 

Nên (2n+4) chia hết cho 2

Suy ra (2n+1).(2n+2) chia hết cho 2 (ĐPCM)

Thủy Trần
Xem chi tiết