So sánh : 201^60 và 398^45
(bằng phương pháp so sánh lũy thừa trung gian)
So sánh
a) 5^217 và 119^72
b) 201^60 và 398^45
c) 5^300 và 3^453
201^60 va 398^48 . so sánh ko tính
So sánh 2 lũy thừa đã cho với lũy thừa trung gian :
2711 và 818
2711=(33)11= 33.11=333
818= (34)8=34.8=332
Vì: 333 > 332 (33>32)
=> 2711 > 818
ta có :\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
lại có :\(81^8=\left(3^4\right)^8=3^{32}\)
vì \(3^{33}>3^{32}\)=>\(27^{11}>81^8\)
Bài này ko cần trung gian
Khi nào ta có thể so sánh hai phân số bằng phương pháp so sánh với phân số trung gian?
A. Khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai
B. Khi tử số của phân số thứ nhất lớn hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại nhỏ hơn mẫu của phân số thứ hai.
C. Cả A và B đều sai
D. Cả A và B đều đúng
Khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc khi tử số của phân số thứ nhất lớn hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại nhỏ hơn mẫu số của phân số thứ hai thì ta có thể so sánh hai phân số bằng phương pháp so sánh với phân số trung gian.
Do đó cả hai đáp án A và B đều đúng
Đáp án cần chọn là D
Khi nào ta có thể so sánh hai phân số bằng phương pháp so sánh với phân số trung gian?
A. Khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai
B. Khi tử số của phân số thứ nhất lơn hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại nhỏ hơn mẫu số của phân số thứ hai
C. Cả A và B đều sai
D. Cả A và B đều đúng
Khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc khi tử số của phân số thứ nhất lớn hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại nhỏ hơn mẫu số của phân số thứ hai thì ta có thể so sánh hai phân số bằng phương pháp so sánh với phân số trung gian.
Do đó cả hai đáp án A và B đều đúng.
Đáp án D.
So sánh ( sử dụng phương pháp trung gian): 339 Và 1121
Ta có:
\(3^{39}< 3^{42}\)
Mà: \(3^{42}=\left(3^2\right)^{21}=9^{21}\)
Lại có: \(9< 11\Rightarrow9^{21}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
So sánh ( sử dụng phương pháp trung gian): B) 5217 và 11972
Ta có:
\(5^{217}>5^{216}\)
Mà: \(5^{216}=5^{3\cdot72}=\left(5^3\right)^{72}=125^{72}\)
Lại có: \(125>119\Rightarrow125^{72}>119^{72}\)
\(\Rightarrow5^{216}>119^{72}\)
\(\Rightarrow5^{217}>119^{72}\)
So Sánh :
a, 5 27, 5 28, 2 63.
b,20160 và 39845
So Sánh 2 lũy thừa:(Biến đổi thành lũy thừa thì mới so sánh nhé)
8^5 và 3.4^7
\(8^5=\left(2^3\right)^5=2^{15}=2.2^{14}\)
\(3.4^7=3.\left(2^2\right)^7=3.2^{14}\)
Vì 2 < 3 nên 85 < 3 . 47