Cho 3 số lẻ.Chứng minh rằng tồn tại 2 số có tổng hoặc hiệu chia hết cho 8
Cho 3 số lẻ.Chứng minh rằng tồn tại 2 số có tổng hoặc hiệu chia hết cho 8
Cho 3 số lẻ.Chứng minh rằng:Tồn tại 2 số có tổng hoặc hiệu chia hết cho 8
giúp mình nha
Vì có 3 số lẻ nên dư khi chia cho 8 chỉ có thể là 1, 3, 5, 7. Ta chia thành 2 nhóm:
Nhóm 1: dư 1 và dư 7
Nhóm 2: dư 3 và dư 5
Có 2 trường hợp
TH1: 3 số đã cho có 2 số thuộc 1 trong 2 nhóm trên. Khi đó tổng của 2 số đó sẽ chia hết cho 8 (Vì tổng của 1 số dư 1 và 1 số dư 7 sẽ chia hết cho 8, cũng như tổng 1 số dư 3 và 5 cũng chia hết cho 8)
TH2: 3 số đã cho không thuộc 1 trong 2 nhóm trên. Khi đó có thể chắc chắn 1 điều là có 2 số cùng số dư. Khi đó hiệu của chúng sẽ chia hết cho 8.
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
cho 3 số nguyên tố lớn hơn 3. chứng minh rằng tồn tại 2 số có tổng hoặc hiệu chia hết cho 12
A trường hợp 1 3 số có dạng 6k+1(thuộc N*)=>hiệu của 1 trong 3 số bằng 0chia hết cho 12 thỏa mãn nhé bạn
B trường hợp 2 6k+5 (thuộc N*) =>hiệu của 3 số bằng 0 chả hết cho 12 thỏa mãn nhé bạn
K MÌNH NHA BẠN
Cho 3 số nguyên tố lớn hơn 3 . Chứng minh rằng tồn tại hai số có tổng hoặc hiệu chia hết cho 12
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
Bài 1: Cho 3 số lẻ. Chứng minh rằng: Tồn tại hai số có tổng hoặc hiệu chia hết cho 8
Bài 2: Tìm x,y thuộc N biết ( x + 1 ).( 2y - 5 ) = 143
B =2(x4+y4+z4)-(x2+y2+z2)2-2(x2+y2+z2)(x+y+z)2+(x+y+z)4
Đặt x4 + y4 + z4 = a, x2 + y2 + z2 = b, x + y + z = c ta có:
B = 2a – b2 – 2bc2 + c4 = 2a – 2b2 + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2
Ta lại có: a – b2 = - 2(x2y2+y2z2+z2x2) và b –c2 = - 2(xy + yz + zx) Do đó;
B = - 4(x2y2+y2z2+z2x2) + 4 (xy + yz + zx)2
= -4x2y2-4y2z2-4z2x2+4x2y2+4y2z2+4z2x2+8x2yz+8xy2z+8xyz2=8xyz(x+y+z)
Cho 3 số lẻ bất kì
Chứng minh rằng : tồn tại 2 số trong 3 số trên mà có tổng hoặc hiệu chia hết cho 8
Giup mk vs nha!Càng nhanh càng tốt
Ta có :
Số lẻ chia 8 dư : 1,3,5,7
Chia 2 nhóm
+ Nhóm 1 :Chia 8 dư 1,7
+Nhóm 2 :Chia 8 dư 3,5
3 số lẻ chia 8 có 3 số dư
3 số dư \(\in\)2 nhóm :theo nguyên lí direclê sẽ có một nhóm chứa ít nhất 2 số dư
TH1 : 2 số dư khác nhau
=> Tổng 2 số chia hết cho 8
TH2 : 2 số dư giống nhau
=> Hiệu 2 số chia hết cho 8
Kb vs mk k?Chúc bạn học tốt
Tữ hỏi tự trả lời , ăn gian quá .
Cho ba số nguyên tố lớn hơn 3 . Chứng minh rằng tồn tại hai số có tổng hoặc hiệu chia hết cho 12
Cho 3 số lẻ. CMR: tồn tại 2 số có tổng hoặc hiệu chia hết cho 8
Vì có 3 số lẻ nên dư khi chia cho 8 chỉ có thể là 1, 3, 5, 7.
Ta chia thành 2 nhóm:
Nhóm 1: dư 1 và dư 7
Nhóm 2: dư 3 và dư 5
Có 2 trường hợp TH1: 3 số đã cho có 2 số thuộc 1 trong 2 nhóm trên.
Khi đó tổng của 2 số đó sẽ chia hết cho 8 (Vì tổng của 1 số dư 1 và 1 số dư 7 sẽ chia hết cho 8, cũng như tổng 1 số dư 3 và 5 cũng chia hết cho 8)
TH2: 3 số đã cho không thuộc 1 trong 2 nhóm trên. Khi đó có thể chắc chắn 1 điều là có 2 số cùng số dư. Khi đó hiệu của chúng sẽ chia hết cho 8.