tinh gia tri x:y
\(\frac{x}{2}=\frac{y}{3}\)va x+y=4
cho x,ythoa man 0<x<1 ,0<y<1 va \(\frac{x}{1-x}+\frac{y}{1-y}=1\)
tinh gia tri cua bieu thuc P=\(x+y+\sqrt{x^2-xy+y^2}\)
từ cái đầu=>x-xy+y-xy=(1-x)(1-y)
<=>x+y-2xy=xy-x-y+1
<=>2(x+y)=3xy+1
\(\Leftrightarrow x+y=\frac{3xy+1}{2}\)
\(\sqrt{x^2-xy+y^2}=\sqrt{\left(x+y\right)^2-3xy}=\sqrt{\frac{9x^2y^2+6xy+1}{4}-3xy}=\sqrt{\frac{9x^2y^2-6xy+1}{4}}=\sqrt{\left(\frac{3xy-1}{2}\right)^2}\)với 3xy-1>0
\(\Rightarrow P=\frac{3xy+1}{2}+\frac{3xy-1}{2}=3xy\)
với 3xy-1<(=)0
\(\Rightarrow P=\frac{3xy+1}{2}+\frac{1-3xy}{2}=1\)
cho\(x
Dễ chỉ ra được: 12(x^2 + y^2) = 25xy
suy ra 12 x^2 + 12 y^2 = 25xy khi đó ta được:
12(x+y)^2 = 49xy hay tìm ra được (x+y)^2 = 49xy/12
Tương tự tìm được (x-y)^2 = xy/12
thay vào A ta có: A^2 = 1/49, hay A = 1/7 hoặc A= -1/7
xin lỗi em mới học lớp 6 vào chtt nha tick mình nha các bạn của mình
mơi lớp sáu bạn biêt bạn ko làm được sao con vào nói cho hay đòi tick nữa
tinh nhanh gia tri cua bieu thuc voi x,y nhan bat ki gia tri nao:
\(\frac{1}{3}x^2y\left(3xy\right)^2y^4+\frac{1}{2}x\left(-2xy\right)^3y^4+x^4y^7+18\)
cho \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
tinh gia tri cua bieu thuc B=\(\frac{x+y-z}{x+2y-z}\)
tinh gia tri bieu thuc dai so x2 y3 +xytai x =1 va y =\(\frac{1}{2}\)
ai tra loi nhanh va dung nhat thi toi se tick cho toi co den 10nick lan
Thay x=1 ; y = 1/2 vào biểu thức \(x^2y^3+xy\)ta được :
\(1^2\frac{1}{2}^2+1.\frac{1}{2}\)= \(1.\frac{1}{4}+1.\frac{1}{2}=\frac{1}{4}+\frac{1}{2}\) \(=\frac{1}{4}+\frac{2}{4}=\frac{3}{4}\)
Vậy gí tringj của biểu thức trên là \(\frac{3}{4}\) tại x= 1 ; y = 1/2
Đúng chưa nhể :)
thay x=1,y=1/2 vào biểu thức,ta có:
\(x^2y^3+xy\)= \(1^3.\left(\begin{cases}1\\2\end{cases}\right)^3\)+ 1.\(\frac{1}{2}\)= 1.\(\frac{1}{8}+\frac{1}{2}=\frac{1}{8}+\frac{4}{8}=\frac{1+4}{8}=\frac{5}{8}\)
vậy giá trị của biểu thức \(x^2y^3+xy\)tại x=1 và y=\(\frac{1}{2}\)là \(\frac{5}{8}\)
bạn do thu ha bạn sai kìa...
\(y^3\) chứ ko fai mũ 2
a, biet x+y=0
tinh gia tri bieu thuc : M=\(x^4-xy^3+x^3y-y^4-1\)
b, biet xyz=2 va x+y+z=0
tinh gia tri bieu thuc : M= \(\left(x+y\right)\left(y+2\right)\left(x+2\right)\)
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
c1: Tap hop cac gia tri nguyen cua x thoa man \(\left(x+\frac{5}{4}\right)\left(x-\frac{19}{7}\right)\)<0
c2: Neu x,y la cac so nguyen thoa man 2xy+4y=6 thi y co the nhan nhung gia tri nam trong tap hop nao
c3: tim 3 so x,y,z biet x+y=8,x+z=10,y+z=12
C4: Gia tri cua x thoa man (x+3)^2=25 va x^3>0 la x=
Câu 1:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Lập bảng:
P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Suy ra -5/4 < x < 19/7
Hay -1,25 < x < 2,(714285)
Mặt khác x thuộc Z nên x = -1, 0, 1, 2
Câu 2:
2xy + 4y = 6
2 (xy + 2y) = 6
=> xy + 2y = 6 / 2 = 3
=> xy + 2y = 3
=> y (x + 2) = 3
Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)
Mik khỏi lập bảng!
Từ bảng trên ta có y = {-3; -1; 1; 3}
Câu 3:
x + y = 8, x + z = 10, y + z = 12
=> (x + y) + (x + z) + (y + z) = 8 + 10 + 12 = 30
=> 2(x + y + z) = 30
=> x + y + z = 15
Đến đây thì dễ rồi! ^^
Câu 4:
(x + 3) = +5 Hoặc -5
Nhưng đề hỏi là x^3 > 0 = .....
Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0
Ta có x + 3 = 5
Từ đó có x = 8
Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....
* ♥ * Xong! * ♫ *
* ♥ * nha! * ♫ *
C1: Lập bảng xét dấu tích:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Ta có:
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Vậy -5/4 < x < 19/7
C3: (x+y)+(x+z)+(y+z)=8+10+12
=> 2(x+y+z)=30
=> x+y+z=15
=> x=15-12=3
y=15-10=5
z=15-8=7
1. Cho \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1.\)
Tinh \(A=\frac{x^2+y^2-z^2}{y+z}+\frac{-x^2+y^2+z^2}{z+x}+\frac{x^2-y^2+z^2}{x+y}\)
2. Cho a,b,c>0 va ab+bc+ca=1. Tinh gia tri \(A=a+b-\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{\left(1+c^2\right)}}\)
1) A = \(\frac{x^2+\left(y-z\right)\left(y+z\right)}{y+z}+\frac{y^2+\left(z-x\right)\left(z+x\right)}{z+x}+\frac{\left(x-y\right)\left(x+y\right)+z^2}{x+y}\)
A = \(\frac{x^2}{y+z}+\left(y-z\right)+\frac{y^2}{z+x}+\left(z-x\right)+\left(x-y\right)+\frac{z^2}{x+y}\)
A = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Nhân cả hai vế của \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) với x ta được:
\(\frac{x^2}{y+z}+\frac{yx}{z+x}+\frac{zx}{x+y}=x\)
Tương tự, ta nhân hai vế với y; z rồi cộng từng vế 2 đẳng thức với nhau ta được:
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{z+x}+\frac{yz}{z+x}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+\left(\frac{zx}{x+y}+\frac{yz}{x+y}\right)=x+y+z\)
=> A + \(\frac{\left(x+z\right)y}{z+x}+\frac{\left(y+z\right)x}{y+z}+\frac{z\left(x+y\right)}{x+y}\) = x+ y + z
=> A + y + x + z = x + y + z
=> A = 0
Vậy A = 0
cau 1: tinh gia tri cua x thoa man
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\sqrt{2}\right)\left(2\sqrt{2}-x\right)=-3\)
cau 2.tinh GTLN cua bieu thuc
\(2x-2x^2+13\)
cau 3. tinh gia tri cua bieu thuc
\(\frac{3^{\left(x+y\right)^2}}{3^{\left(x-y\right)^2}}\)voi xy=\(\frac{1}{2}\)
cau 4. tim GTLN cua
\(-3x^2-6x-4\)
cau 5. cho ham so : f(x)=\(\frac{1}{5x+9}\)
tinh gia tri cua \(f\left(\frac{40}{25}\right)\)
cau 6. cho hinh thang can ABCD . Day nho AB,goc D bang 64 do. tinh so do goc ngoai tai A