tính nhanh
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)
Tính nhanh:\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}:\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
Bài 1:Tính nhanh:
a,\(\frac{2}{3}+\frac{4}{6}+\frac{6}{3}\)
b,\(\frac{3}{4}+\frac{6}{8}+\frac{18}{12}\)
Bài 2:Tính:
a,\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
b,\(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\)
a, \(\frac{2}{3}+\frac{2}{3}+\frac{6}{3}=\frac{10}{3}\)
b,\(\frac{3}{4}+\frac{3}{4}+\frac{3}{2}=\frac{6}{4}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)
Tính hợp lý
\(\frac{\frac{5}{3}+\frac{5}{8}-\frac{5}{7}}{\frac{-4}{3}-\frac{-4}{8}+\frac{4}{7}}:\frac{\frac{2}{3}-\frac{1}{6}+\frac{6}{7}}{\frac{-1}{3}+\frac{1}{6}-\frac{1}{7}}\)
\(=\frac{5\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}{-4\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}:\frac{2\left(\frac{1}{3}-\frac{1}{12}+\frac{3}{7}\right)}{ }\)
MÃu thứ hai sao ý
So sánh:\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}}{\frac{\frac{5}{6}}{\frac{7}{8}}}+\frac{\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{4}{3}}{\frac{2}{1}}}\) và\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{5}{6}}{\frac{7}{8}}+\frac{\frac{4}{3}}{\frac{2}{1}}}\)và \(\frac{\frac{\frac{1}{2}+\frac{8}{7}}{\frac{3}{4}+\frac{6}{5}}}{\frac{\frac{5}{6}+\frac{4}{3}}{\frac{7}{8}+\frac{2}{1}}}\)và\(\frac{\frac{\frac{1+8}{2+7}}{\frac{3+6}{4+5}}}{\frac{5+4}{\frac{6+3}{2+1}}}\)
Tính
a) \(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{1}{-8}+\frac{1}{9}+\frac{1}{8}+\frac{1}{-7}+\frac{-1}{6}+\frac{-1}{5}\)
b) (-11).36-64.11
c) \(\frac{\frac{1}{3}+\frac{1}{7}+\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}+\frac{2}{13}}.\frac{\frac{3}{4}+\frac{3}{16}+\frac{3}{64}+\frac{3}{256}}{1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}}+\frac{3}{8}\)
Bài 1 Thưc hiện phép tính ( tính nhanh nếu có thể)
a)\(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)
b)\(\left(\frac{5}{7}-\frac{7}{5}\right)-\left[\frac{1}{2}-\left(\frac{-2}{7}-\frac{1}{10}\right)\right]\)
C)\(\left(\frac{-1}{2}\right)-\left(\frac{-3}{5}\right)+\left(\frac{-1}{9}\right)+\frac{1}{17}-\left(\frac{-2}{7}\right)+\frac{4}{35}-\frac{7}{18}\)
d)\(\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5-\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
Tính nhanh:
A=\(\left(\frac{2}{5}+\frac{2}{9}+\frac{2}{11}\div\frac{7}{5}+\frac{7}{9}+\frac{7}{11}\right)\div\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\div\frac{7}{6}-\frac{7}{8}+\frac{7}{10}\right)\)
a= (\(\frac{2}{5}\)+\(\frac{2}{9}\)+\(\frac{2}{11}\)\(\times\)\(\frac{5}{7}\)\(+\frac{7}{9}\)\(+\frac{7}{11}\)\()\)
1. Tính tổng
\(\frac{1}{2}\cdot\frac{1}{3}\cdot+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}\)
* LÀM NỐT *
#Louis
1/2.1/3+1/3.1/4+1/4.1/5+...+1/8.1/9
=1/2.3=1/3.4+1/4.5+...+1/8.9\
=1/2-1/3+1/3-1/4=1/4-1/5+...+1/8.1/9
=1/2-1/9
=9/18-2/18
=7/18
HỌC TỐT NHA BẠN
Tính nhanh: \(\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\frac{6}{4!+5!+6!}+\frac{7}{5!+6!+7!}+\frac{8}{6!+7!+8!}\)
Đặt P = ... ( biểu thức đề bài )
Nhận xét: Với \(k\inℕ^∗\) ta có:
\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)
\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)