3+x phần 7+y = 3 phần 7
Tìm x và y biết x+ y = 20
Tìm x, y thuộc N biết rằng 3+ x phần 7+y = 3 phần 7
Và x+y =20
Theo đề ra ta có: \(\frac{3+x}{7+y}=\frac{3}{7}\)và x + y =20
<=> \(\frac{3.a}{7.a}=\frac{3+x}{7+y}=\frac{3}{7}\)(a \(\in\)N)
x=20:(3+7)x3=6
y=20:(3+7)x7=21
Vậy x=6; y=21
nguyễn ngọc quí bạn có thể giải thích rõ hơn được không
bạn ấy làm sai rồi 6+21 không có bằng 20 mà
a) x phần y = 9 phần 7 ; y phần 7 = 7 phần 3 và x-y+z = -15
b) x phần y = 7 phần 20 ; y phần z = 5 phần 8 và 2x + 5y - 2z = 100
Câu a) sai đề nhé bạn.
b) Ta có:
\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\) và \(2x+5y-2z=100\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(2x+5y-2z=100\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{2x+5y-2z}{2.7+5.20-2.32}=\frac{100}{50}=2\)
\(\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=2.7=14\\\frac{y}{20}=2\Rightarrow y=2.20=40\\\frac{z}{32}=2\Rightarrow z=2.32=64\end{cases}}\)
Vậy \(x=14;y=40;z=64\)
Tìm các cặp số nguyên x và y sao cho:
3 + x phần 7 + y = 3 phần 7 và x + y = 20
Bn tham khảo link này nha :
https://olm.vn/hoi-dap/detail/2023570570.html
~Study well~
#KSJ
Vì \(\frac{3+x}{7+y}=\frac{3}{7}\)\(\Rightarrow\)( 3 + x) . 7 = (7+y) . 3
=> 21 + 7x = 21 + 3y
=> 7x = 3y (1)
Vì x + y = 20 => 3( x + y) = 60
=> 3x + 3y = 60
=> 3y = 60 - 3x (2)
Từ (1) và (2) => 7x = 60 -3x
=> 7x + 3x = 60 => 10x = 60 => x = 6
=> y = 20 - 6 = 14
KL :...
\(\text{Ta có : }\hept{\begin{cases}\frac{3+x}{7+y}=\frac{3}{7}\left(1\right)\\x+y=20\Rightarrow x=20-y\left(2\right)\end{cases}}\)
\(\text{Thay }\left(2\right)\text{vào }\left(1\right)\Rightarrow\frac{3+20-y}{7+y}=\frac{3}{7}\)
\(\Rightarrow\frac{23-y}{7+y}=\frac{3}{7}\)
\(\Rightarrow\left(23-y\right).7=\left(7+y\right).3\)
\(\Rightarrow161-7y=21+3y\)
\(\Rightarrow161-21=7y+3y\)
\(\Rightarrow140=10y\)
\(\Rightarrow y=14\)
\(\text{Thay y = 14 vào ( 2 ) }x=20-14\Rightarrow x=6\)
tìm ba số x , y, z biết x phần 2 =y phần 3 = phần 4 và x+y-3=-20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y}{2+3}=\frac{-17}{5}=-3,4\)
=> x = 2 . ( -3,4 ) = -6,8
=> y = 3 . ( -3,4 ) = -10,2
=> z = 4 . ( -3,4 ) = -13,6
Vậy,..........
a)Tìm 2 số x và y biết x phần 3=y phần 4 và x+y=28
b)Tìm 2 số x và y biết x/2=y/(-5) và x-y=-7
c)(x - 1 phần 5) mũ 2004 +(y+0.4)mũ 100+(2-3)mũ 678 =0
Bài 3 : a) Tìm x,y,z biết :
2x = 3y ; 4y = 5z và 4x - 3y + 5z = 7
b) x^3 phần 8 = y ^3 phần 64 = z^3 phần 216 và x^2 +y^2 + z^2 = 14
Bài 4 : Cho 3 số x,y,z khác 0 thỏa mãn :
y + z - x phần x = z + x - y phần y = x + y - z phần z hãy tính giá trị biểu thức :
C = ( 1 + y phần x ) ( 1 + y phần z ) ( 1 + z phần x )
Bài 5 : Tìm x,y,z biết : 2x = 3y = 5z và | x - 2y | = 5
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
Bài 1 : Tìm các số a,b,c biết :
a) a phần 3 = b phần 2 ; b phần 7 = c phần 5 và 3x - 7b - 5c = 30
b) 7a = 9b = 21c và a - b + c = -15
Bài 2 : Tìm x,y,z biết :
a) x : y : z = 5 : 3 : 4 và x + 2y - z = -121
b) 5x = 2y ; 3y = 5z và x + y + z = -976
c) x phần 3 = y phần 12 = z phần 5 và xyz =22,5
d) x phần 3 = y phần 7 = z phần và x^2 - y^2 + z^2 = -60
\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)
\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)
Vậy: a = 42
b = 28
c = 20
Bài 1:
a)
Ta có: \(\frac{a}{3}=\frac{b}{2}\)
\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)
Và: \(\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)
=> \(\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)
+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)
+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)
+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)
Vậỵ:..........
b)
Ta có: 7a = 9b = 21c
=> 7a/63 = 9b/63 = 21c/63
=> a/9 = b/7 = c/3
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3
+) a/9 = -3 => a = -27
+) b/7 = -3 => b = -21
+) c/3 = -3 => c = -9
Vậy:..............
Bài 2:
a) Theo bài: x:y:z = 5:3:4
=> x/5 = y/3 = z/4
Áp dụng tính chất dãy tiwr số bằng nhau; ta có:
x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11
+) Với x/5 = -11 => x=-55
+) Với y/3 = -11 => y = -33
+) Với z/4 = -11 => z = -44
Vậy:......
b) _ Tương tự câu a) ở bài 1
c)
Ta đặt: x/3 = y/12 = z/5 = k ( \(k\inℤ\))
=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)
Theo bài: xyz = 22,5
=> 3k.12k.5k = 22,5
=> 180.k3 = 22,5
=> k3 = 1/8 = (1/2)3
=> k = 1/2
Với k = 1/2 => x = 3/2; y = 6; z = 5/2
Vậy:..........
d)
\(\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}=\frac{a-b+c}{\frac{1}{7}-\frac{1}{9}+\frac{1}{21}}=-\frac{15}{\frac{5}{63}}=-189\)
còn lại tự làm =)
bài 2
\(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{x+2y-z}{5+6-4}=-\frac{121}{7}\)
đến đây tự tính, mk hướng dẫn cách làm thôi =)
Tìm x, y
x+y phần 2=x-y phần 3=y+1 phần 4
x phần 2= y phần5 biết x nhân y= 20
3+x phần 5+y=3 phần 5 và x+y=16
x-7 phần y-6 =7 phần 6 và x-y=-4
\(\frac{3+x}{5+y}=\frac{3}{5}\)
=> (3 + x).5 = (5 + y).3
=> 15 + 5x = 15 + 3y
=> 5x = 3y
=> \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
=> x = 2.3 = 6; y = 2.5 = 10
\(\frac{x-7}{y-6}=\frac{7}{6}\)
=> (x - 7).6 = (y - 6).7
=> 6x - 42 = 7y - 42
=> 6x = 7y
=> \(\frac{x}{7}=\frac{y}{6}=\frac{x-y}{7-6}=\frac{-4}{1}=-4\)
=> x = -4.7 = -28; y = -4.6 = -24