Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Van Dat
Xem chi tiết
Mai Thanh Tâm
Xem chi tiết
Devil
3 tháng 4 2016 lúc 10:02

a+3=8

suy ra a=5

ta có: 5+2b=9

2b=4

b=2

vậy a+b=2+5=7

tổng a+b+c</7 cóGTLN 

✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Trần Thị Loan
25 tháng 7 2015 lúc 22:03

(a + 3c) + (a+ 2b) = 8 + 9 = 17

=> 2a + 2b + 3c = 17 => 2.(a+b+ c) + c = 17

a + b + c lớn nhất => 2.(a+b+c) lớn nhất => c nhỏ nhất ; c không âm => c = 0

=> a = 8 => 8 + 2b = 9 => b = 1/2

Vậy a = 8; b = 1/2; c = 0 thì...

OoO_Nhok_Lạnh_Lùng_OoO
30 tháng 7 2017 lúc 20:59

Ta có: 

a+2c+a+3b=8+9

=> 2a+3b+2c=17

=> 2(a+b+c)+c=17

Vì a+b+c lớn nhất=> 2(a+b+c) lớn nhất

=> c nhỏ nhất không âm.

=> a=8

b=1/2

c= 0

Vậy a=8

Trần Đại Nghĩa
Xem chi tiết
Lê Hoàng
17 tháng 3 2020 lúc 14:57

Với \(a,b,c\in Z\)

Trong \(a=2^b\cdot c\) có thừa số \(2^b>0\forall b\in Z\) nên \(a\) và \(c\) phải cùng dấu

\(TH1\): Với \(a,c\le-1\) (âm):

Ta có: \(9^a\notin Z\) (vì có số mũ âm)

\(\Rightarrow9^a+952\notin Z\) (vì \(952\in Z\)), mà \(\left(b+41\right)^2\in Z\) (vì \(b\in Z,41\in Z\))

\(\Rightarrow9^a+952\ne\left(b+41\right)^2\)

\(TH2\): Với \(a,c\ge0\) (không âm):

(I) Với \(b\ge1\):

Ta có: \(2^b⋮2\) (vì \(b\ge1\)\(\Rightarrow a=2^b\cdot c⋮2\) \(\Rightarrow\) \(a\) chẵn

\(\Rightarrow9^a\) có số mũ \(a\) chẵn, thì \(9^a\) có chữ số tận cùng là 1

\(\Rightarrow9^a+952\) có chữ số tận cùng là 1 + 2 = 3

Ta lại có: \(\left(b+41\right)^2\) không bao giờ có chữ số tận cùng là 3 (vì số chính phương không bao giờ có chữ số tận cùng là 3)

Từ đó, \(9a+952\ne\left(b+41\right)^2\)

(II) Với \(b\le0\):

Ta có: \(a=2^b\cdot c\Leftrightarrow c=\frac{a}{2^b}\)

\(9^a>0\forall a\in Z\Rightarrow9^a+952>0\forall a\in Z\)

Nếu \(a\) là số chẵn thì không thể tìm được \(b,c\in Z\) (đã chứng minh trên).

Với \(a\) lẻ thì \(9^a\) thì có chữ số tận cùng là 9 \(\Rightarrow9^a+952\) có chữ số tận cùng là 1.

\(9^a+952=\left(b+41\right)^2\Leftrightarrow b+41=\pm\sqrt{9^a+952}\)

Vì \(b+41\in Z\) (chứng minh trên), nên \(9^a+952\in Z\Rightarrow9^a+952\) là số chính phương, mà \(9^a+952\)lẻ.

\(\Rightarrow9^a+952\) chia 8 dư 1 \(\Rightarrow9^a\) chia 8 dư 1 (vì \(952⋮8\))

Chỉ tìm được \(a=1,a=3\) thoả mãn điều kiện trên (\(9^1=9\) chia 8 dư 1, \(9^3=729\) chia 8 dư 1).

- Thay \(a=1\), ta có: \(b+41=\pm\sqrt{9+952}=\pm\sqrt{961}=\pm31\Leftrightarrow b\in\left\{-72;-10\right\}\)

\(c\in\left\{\frac{1}{2^{-72}};\frac{1}{2^{-10}}\right\}=\left\{2^{72};2^{10}\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(1;-72;2^{72}\right),\left(1;-10;2^{10}\right)\).

- Thay \(a=3\), ta có: \(b+41=\pm\sqrt{9^3+952}=\pm41\Leftrightarrow b\in\left\{-82;0\right\}\)

\(c\in\left\{\frac{3}{2^{-82}};\frac{3}{2^0}\right\}=\left\{2^{82}\cdot3;3\right\}\)

Ta được các cặp \(\left(a;b;c\right)=\left(3;-82;2^{82}\cdot3\right),\left(3;0;3\right)\).

Nếu đề bài cho là \(b\) không âm thì \(a=3,b=0,c=3\) là các số cần tìm.

P/S: Nếu mà đề bài cho \(b\) không âm thì không cần phải trình bày dài dòng như trên.

\(b\le0\) (từ \(TH2\) phần II) và \(b\ge0\) (\(b\) không âm), tức là \(b=0\) (\(a=2^0\cdot c=1\cdot c=c\)), rồi không cần trình bày dài dòng như trên, mà chỉ cần thay \(b=0\) vào phương trình \(9^a+952=\left(b+41\right)^2\) là tìm được \(a=c=3\) ngay.

Khách vãng lai đã xóa
Nguyễn Ngọc Ánh
Xem chi tiết
Trịnh Xuân Hóa
15 tháng 2 2018 lúc 16:05

 a+3c +a+2b = 17 

=>2a +2b +3c = 17

=>2.(a+b)+3c=17

=>a+b+3c/2=17/2

=> N= a+b-c-17/2=a+b-c-a-b -3c/2=-c-3c/2

=> N là các số  không âm

Zz Victor_Quỳnh_Lê zZ
Xem chi tiết
ngonhuminh
8 tháng 1 2017 lúc 23:37

a+3c=8

a+2b=9 => cần C/m 2a+2b-2c<=17

2a+3c+2b=17

a,b,c không âm=> 2b+3c>=2b-2c=> 2a+2b-2c<=17=> dpcm

đẳng thức trên xẩy ra khi c=0

N=0

c=0

a=8

b=1/2

Nguyễn Hoàng Giang
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
11 tháng 8 2019 lúc 8:12

\(\hept{\begin{cases}a+3c=2016\\a+2b=2017\end{cases}}\left(1\right)\)

Cộng từng vế của hệ (1), ta được:

\(2a+2b+3c=4033\)

\(\Leftrightarrow2a+2b+2c=4033-c\)

\(\Leftrightarrow2\left(a+b+c\right)=4033-c\)

Vì c không âm nên \(4033-c\le4033\)

\(\Rightarrow a+b+c\le\frac{4033}{2}=2016\frac{1}{2}\)

Vậy GTLN của P là \(2016\frac{1}{2}\Leftrightarrow c=0\)

Lúc đó: \(a=2016;b=\frac{1}{2}\)

Phan Nghĩa
13 tháng 7 2020 lúc 9:32

Ta có: a + 3c = 2016 ; a + 2b = 2017

Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033  

Suy ra: 2 (a + b + c) = 4033 - c

Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất

Nên c nhỏ nhất , mà c >= 0 nên c = 0.

Từ đó ta suy ra  : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5

Vậy Max P = 2016,5 

Khi c = 0 ; a = 2016 ; b = 0,5

Khách vãng lai đã xóa
Dương Tiến	Khánh
Xem chi tiết
Khanh Vu
Xem chi tiết