Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoangkunvai
Xem chi tiết
Thanh Tùng DZ
7 tháng 6 2019 lúc 16:28

với n >0, ta có :

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Gọi biểu thức đã cho là A

\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)

\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)

\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)

\(A=-\sqrt{1}+\sqrt{9}=2\)

shitbo
7 tháng 6 2019 lúc 16:39

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)

Arceus Official
Xem chi tiết
Biện Bạch Hiền
Xem chi tiết
Kiên-Messi-8A-Boy2k6
27 tháng 5 2018 lúc 6:51

\(A=\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2014}+\sqrt{2018}}\)

\(\Rightarrow A=\sqrt{5}-\sqrt{1}+\sqrt{9}-\sqrt{5}+...+\sqrt{2018}-\sqrt{2014}\)

\(\Rightarrow A=-\sqrt{1}+\sqrt{2018}\)

cho mk nha

Ai trên 11 điểm cho mình nha câu dưới 3 mk lại

Biện Bạch Hiền
27 tháng 5 2018 lúc 6:53

Bạn ơi trục căn thức sao không còn mẫu vậy

Bạn Uyên giấu tên
27 tháng 5 2018 lúc 6:55

trục căn thức k còn mẫu vì bn ý copy bn ẹ, copy của Thắng Nguyễn :))

Lê Thảo Linh
Xem chi tiết
Nguyễn Minh Triết
30 tháng 8 2016 lúc 22:39

Phân tích mỗi hạng tử theo kiểu như dưới đây

\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}\right)^2-\left(\sqrt{2}\right)^2}\)

\(\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)

Khi đó mọi mẫu đều bằng -1

Bạn tiếp tục làm và kết quả nhận được là \(1-\sqrt{9}\)

Lê Quý Trung
Xem chi tiết
Bùi Thế Hào
28 tháng 5 2018 lúc 16:40

\(Q=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

=> \(Q=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+\frac{\sqrt{9}-\sqrt{13}}{-4}+...+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)

=> \(Q=-\frac{1}{4}.\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}\right)\)

=> \(Q=-\frac{1}{4}.\left(1-\sqrt{2005}\right)\)

=> \(Q=\frac{\sqrt{2005}-1}{4}\)

hoàng hà diệp
Xem chi tiết
Nguyễn Xuân Anh
2 tháng 10 2018 lúc 22:20

\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)

\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)

          \(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

          \(=8+2\sqrt{6-2\sqrt{5}}\)

          \(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)

           \(=8+2\sqrt{5}-2=6+2\sqrt{5}\)

          \(=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

    \(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)

\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)

\(=10,94430659\)

\(\text{Lm hơi vắn tắt thông cảm nha!!}\)

Nguyễn Anh Sơn
Xem chi tiết
alibaba nguyễn
6 tháng 6 2017 lúc 16:53

\(P=\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{\sqrt{5}-\sqrt{1}}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+...+\frac{\sqrt{2005}-\sqrt{2001}}{4}\)

\(=\frac{\sqrt{2005}-\sqrt{1}}{4}=\frac{\sqrt{2005}-1}{4}\)

chu tien dat
Xem chi tiết
Viễn Ma
Xem chi tiết