Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lee Suho
Xem chi tiết
Lê Văn Đăng Khoa
Xem chi tiết
lê thị mai lan
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết
Bùi Hồng Anh
Xem chi tiết
lê tùng lâm
1 tháng 4 2018 lúc 20:14

ai  mà biết hả

Bùi Hồng Anh
1 tháng 4 2018 lúc 20:24

Bạn vô duyên quá đấy!

nguyen thi khanh huyen
2 tháng 4 2018 lúc 20:04

Ta có:

31(xyzt+xy-xt-zt-1)=40(yzt-y-t)

\(\Rightarrow\frac{xyzt-xy+xt+zt+1}{yzt+y+t}\)\(=\frac{40}{31}\)

\(\Rightarrow\frac{x\left(yzt+y+t\right)+zt+1}{yzt+y+t}\)\(=\frac{40}{31}\)

\(\Rightarrow\frac{zt+1}{yzt+y+t}=\frac{40}{31}\)

còn dài lắm bạn mở câu hỏi tương tự nha

Nam Hà Ứng
Xem chi tiết
Lê Thị Trà MI
Xem chi tiết
Le Thi Khanh Huyen
28 tháng 8 2016 lúc 14:30

Ta có :

\(31\left(xyzt+xy+xt+zt+1\right)=40\left(yzt+y+t\right)\)

\(\Rightarrow\frac{xyzt+xy+xt+zt+1}{yzt+y+t}=\frac{40}{31}\)

\(\Rightarrow\frac{x\left(yzt+y+t\right)+zt+1}{yzt+y+t}=\frac{40}{31}\)

\(\Rightarrow x+\frac{zt+1}{yzt+y+t}=\frac{40}{31}\)

\(\Rightarrow x+\frac{1}{\left(\frac{yzt+y+t}{zt+1}\right)}=\frac{40}{31}\)

\(\Rightarrow x+\frac{1}{\left(y+\frac{t}{zt+1}\right)}=\frac{40}{31}\)

\(\Rightarrow x+\frac{1}{y+\frac{1}{\left(\frac{zt+1}{t}\right)}}=\frac{40}{31}\)

\(\Rightarrow x+\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}\)

\(\frac{40}{31}< \frac{62}{31}=2\Rightarrow x< 2\)

Với x = 0; có :

\(\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}\)

\(\Rightarrow y+\frac{1}{z+\frac{1}{t}}=\frac{31}{40}\)

Mà \(\frac{31}{40}< 1\Rightarrow y< 1\Rightarrow y=0\)

\(\Rightarrow\frac{1}{z+\frac{1}{t}}=\frac{31}{40}\)

\(\Rightarrow z+\frac{1}{t}=\frac{40}{31}\)

\(\cdot z=0\Rightarrow t=\frac{31}{40}\notin Z\)(Loại )

\(\cdot z=1\Rightarrow t=\frac{31}{9}\notin Z\)(Loại )

Với \(x=1;\)ta có :

\(\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}-1\)

\(\Rightarrow\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{9}{31}\)

\(\Rightarrow y+\frac{1}{z+\frac{1}{t}}=\frac{31}{9}\)

\(\frac{31}{9}< \frac{36}{9}=4\Rightarrow y< 4\)

\(\cdot y=0\Rightarrow z+\frac{1}{t}=\frac{9}{31}\Rightarrow z=0\Rightarrow t=\frac{31}{9}\notin Z\)(Loại)

\(\cdot y=1\Rightarrow z+\frac{1}{t}=\frac{9}{22}\Rightarrow z=0\Rightarrow t=\frac{22}{9}\notin Z\)(Loại)

\(\cdot y=2\Rightarrow z+\frac{1}{t}=\frac{9}{13}\Rightarrow z=0\Rightarrow t=\frac{13}{9}\notin Z\)(Loại )

\(\cdot y=3\Rightarrow z+\frac{1}{t}=\frac{9}{4}\)

\(\frac{9}{4}< 3\Rightarrow z< 3\)

\(z=0\Rightarrow t=\frac{4}{9}\notin Z\)\(z=1\Rightarrow t=\frac{4}{5}\notin Z\)\(z=2\Rightarrow t=4\)( Thỏa mãn )

Vậy \(x=1;y=3;z=2;t=4.\)

Hoàng Văn Cam
Xem chi tiết
Attems
Xem chi tiết
Chung Đào Văn
22 tháng 7 2021 lúc 8:40

31(xyzt+xy+xt+zt+1)=40(yzt+y+t)31(xyzt+xy+xt+zt+1)=40(yzt+y+t)

⇒xyzt+xy+xt+zt+1yzt+y+t=4031⇒xyzt+xy+xt+zt+1yzt+y+t=4031

⇒x(yzt+y+t)+zt+1yzt+y+t=4031⇒x(yzt+y+t)+zt+1yzt+y+t=4031

⇒x+zt+1yzt+y+t=4031⇒x+zt+1yzt+y+t=4031

⇒x+1(yzt+y+tzt+1)=4031⇒x+1(yzt+y+tzt+1)=4031

⇒x+1(y+tzt+1)=4031⇒x+1(y+tzt+1)=4031

⇒x+1y+1(zt+1t)=4031⇒x+1y+1(zt+1t)=4031

⇒x+1y+1z+1t=4031⇒x+1y+1z+1t=4031

4031<6231=2⇒x<24031<6231=2⇒x<2

Với x = 0; có :

1y+1z+1t=40311y+1z+1t=4031

⇒y+1z+1t=3140⇒y+1z+1t=3140

Mà 3140<1⇒y<1⇒y=03140<1⇒y<1⇒y=0

⇒1z+1t=3140⇒1z+1t=3140

⇒z+1t=4031⇒z+1t=4031

⋅z=0⇒t=3140∉Z⋅z=0⇒t=3140∉Z(Loại )

⋅z=1⇒t=319∉Z⋅z=1⇒t=319∉Z(Loại )

Với x=1;x=1;ta có :

1y+1z+1t=4031−11y+1z+1t=4031−1

⇒1y+1z+1t=931⇒1y+1z+1t=931

⇒y+1z+1t=319⇒y+1z+1t=319

319<369=4⇒y<4319<369=4⇒y<4

⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z(Loại)

⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z(Loại)

⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z(Loại )

⋅y=3⇒z+1t=94⋅y=3⇒z+1t=94

94<3⇒z<394<3⇒z<3

z=0⇒t=49∉Zz=0⇒t=49∉Zz=1⇒t=45∉Zz=1⇒t=45∉Zz=2⇒t=4z=2⇒t=4( Thỏa mãn )

Vậy x=1;y=3;z=2;t=4.