Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen_phuong_linh
Xem chi tiết
shitbo
18 tháng 12 2018 lúc 19:20

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

Huyền Nhi
18 tháng 12 2018 lúc 19:24

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

Nguyễn Thị Bảo Yến
Xem chi tiết
Dương No Pro
5 tháng 11 2020 lúc 20:01

Giải:

a)    A = 21 + 22 + 23 + 24 + .............. + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7

=>  A \(⋮\)cả 3 và 7

Vây  A \(⋮\)cả 3 và 7

b) B = 31 + 32 + 33 + 34 + ............... + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n 

mà 32 \(⋮\)4

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13

=> B \(⋮\)cả 4 và 13

Vậy  B \(⋮\)cả 4 và 13

c)  C = 51 + 52 + 53 + 54 + ................... + 52010

Ta có : 

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 54 \(⋮\)6

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31 

=> C \(⋮\)cả 6 và 31

Vậy C \(⋮\)cả 6 và 31

d)  D = 71 + 72 + 73 + 74 + ...................... + 72010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 72 \(⋮\)8

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57

=> D \(⋮\)cả 8 và 57

Vậy  D \(⋮\)cả 8 và 57

Học tốt!!!

Khách vãng lai đã xóa
kaitokid
Xem chi tiết
Angel of the eternal lig...
29 tháng 1 2020 lúc 15:27

Ta có : \(a-11b+3c⋮17\)

\(\Leftrightarrow19.\left(a-11b+3c\right)⋮17\)

\(\Leftrightarrow19a-209b+57c⋮17\)

\(\Leftrightarrow\left(17a-204b+51c\right)+\left(2a-5b+6c\right)⋮17\)

\(\Rightarrow\left(2a-5b+6c\right)⋮17\)(vì 17a - 204b + 51c đã chia hết cho 17 ) 

\(\RightarrowĐCPM\) 

Khách vãng lai đã xóa
vi tieu bao
Xem chi tiết
Itami Mika
Xem chi tiết
Phạm Ngọc Thạch
3 tháng 7 2015 lúc 20:03

a) Ta sẽ dùng cách cm gián tiếp:

     Cho A = 14^13 + 14^12 + .... +14 + 1

=> 14A    = 14^14 + 14^13 +...+14^2 +14

=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)

13A = 14^14 - 1

Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)

b) Tương tự như vậy: 

 Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1

=> 2015B    = 2015^2016 + 2015^2015 +...+2015^2 +2015

=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)

2014B = 2015^2016 - 1

Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)

Cao Hương Giang
5 tháng 7 2015 lúc 16:42

Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :

a, 14^14đồng dư 1^14đồng dư 1(mod13) 

Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13)   (đpcm)

b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1 

...........rồi bạn suy ra nhé

 

  

Lê Tài Bảo Châu
Xem chi tiết
Ngô Thị Thảo May
Xem chi tiết
dung nguyen
Xem chi tiết
Văn Bùi Lê Dình
Xem chi tiết
Cô nàng dino
Xem chi tiết
Freya
13 tháng 1 2017 lúc 11:41

Ta có:

abcde(ngang) chia hết cho 7 ⇔ (khó viết dấu ngoặc lắm). Bạn cứ dựa vào ssau hiệu chia hết 7 mà chứng minh :

Lấy chữ số đầu tiên nhân với 3 rồi cộng thêm chữ số tiếp theo, được bao nhiêu lại nhân với 3 rồi cộng thêm chữa số tiếp theo… cứ như vậy cho đến chữ số cuối cùng. Nếu kết quả cuối cùng này chia hết cho 7 thì số đó chia hết cho 7.

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

Cô nàng dino
13 tháng 1 2017 lúc 11:46

Bạn ơi 6 csố mà