CMR của bốn số nguyên chẵn liên tiếp cộng với 16 luôn là số chính phương
1 , hãy chứng minh tổng của 3 số chính phương liên tiếp không phải là một số chính phương
2,chứng minh tích của bộ số tự nhiên liên tiếp cộng với một luôn là số chính phương
3,ta biết có 25 số nguyên tố bé hơn 100 . tổng của 25 số nguyên tố là chẵn hay lẻ
1.Chứng minh tích của 4 số tự nhiên liên tiếp không là số chính phương
2.Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 là số chính phương
3.Chứng minh tích của 4 số tự nhiên chẵn liên tiếp cộng 16 là số chính phương
4.Chứng minh tích của 4 số tự nhiên lẻ liên tiếp cộng 16 là số chính phương
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
CMR tổng của tích 4 số tự nhiên chẵn liên tiếp với 16 là 1 số chính phương
Gọi 4 số tự nhiên chẵn liên tiếp đó lần lượt là x; x+2; x+4; x+6. Ta có:
x(x+2)(x+4)(x+6) + 16
= x(x+6)(x+2)(x+4) + 16
= ( x2 + 6x)( x2+6x+8) + 16 (*)
Đặt x2 + 6x= a. Thay vào (*) ta lại có
(*) = a (a+8) + 16= a2 + 8a + 16= ( a+4)2
Thay a= x2 + 6x vào ta có:
(*)= ( x2 + 6x + 4)2
Do x là số tự nhiên nên \(x^2+6x+4\) cũng là một số tự nhiên.
Vậy tổng của tích 4 số tự nhiên chẵn liên tiếp với 16 là 1 số chính phương
BÀI GIẢI
Gọi 4 số liên tiếp là 2a ; 2a + 2 ; 2a + 4 ; 2a + 6.
Tích của chúng là 2a(2a + 2)(2a + 4)(2a + 6)
Ta có :
A = 2a(2a + 2)(2a + 4)(2a + 6) + 16
A = (4a^2 +4a)(4a^2 + 12a + 8a + 24) + 16
A = (4a^2 +4a)(4a^2 + 20a + 24) + 16
A = 16a^4 + 80a^3 + 96a^2 + 16a^3 + 80a^2 + 96a +16
A = 16a^4 + 96a^3 + 176a^2 + 96a +16
A = 16a^4 + 48a^3 + 16a^2 + 48a^3 + 144a^2 + 48a + 16a^2 + 48a +16
A = (4a^2 + 12a + 4)(4a^2 + 12a + 4)
A = (4a^2 + 12a + 4)^2 (1)
Vì a thuộc N nên 4a^2 + 12a + 4 thuộc N (2)
(1)(2)=> A là số chính phương
=> Đpcm
C/M: Tích của bốn số nguyên liên tiếp cộng với 1 là số chính phương
gọi tích của 4 số nguyên liên tiếp là:z(z+1)(z+2)(x+3)
=> ta có: \(z\left(z+3\right)\left(z+1\right)\left(z+2\right)+1=\left(z^2+3z\right)\left(z^2+3z+2\right)+1\)
đặt z^2+3z=t (t thuộc Z) => \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\Leftrightarrow\left(z^2+3z+1\right)^2\)
=> là 1 số chính phương
CMR: Tổng của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
A=n +(n+1)+(n+2)+(n+3)+1 =4n +7
với n =2 => A =15 là số chính phương đâu
Bạn nhầm tổng với tích thì phải
Giup mk nhá mn!!!!!!! mk cảm ơn lắm lun....
CMR: tổng của tích bốn số tự nhiên chẵn liên tiếp với 16 là số chính phương......Tìm các số nguyên a, b, c sao cho (x + a)(x - 2) - 7 = (x + b)(x + c)
# hana no kisetsu #
T = 2k ( 2k + 2 )( 2k + 4 )( 2k + 6 ) + 16 = 16k (k + 1)(k + 2)(k + 3) + 16
= 16 ( k(k + 1)(k + 2)(k + 3) + 1 ) = 16( (k2 + 3k)(k2 + 3k + 2) + 1 )
Đặt k2 + 3k là a thì a\(\in\)N*
=> T = 16( a(a + 2) + 1 ) = 16( a2 + 2a + 1) = 42 ( a + 1 )2 = (4(a + 1))2
Vậy T là số chính phương
nên với x = 2 thì: -7 = (2 + b)(2 + c)
Do b, c \(\in\)Z và vai trò của b và c như nhau nên ta có:
# trường hợp 1: \(\hept{\begin{cases}2+b=-7\\2+c=1\end{cases}\leftrightarrow\hept{\begin{cases}b=-9\\c=-1\end{cases}}}\)Thay vào phương trình (1) ta tìm được a = -8
Nên ta có: (x - 8)(x - 2) -7 = (x - 9)(x - 1)
# trường hợp 2: \(\hept{\begin{cases}2+b=7\\2+c=-1\end{cases}\leftrightarrow\hept{\begin{cases}b=5\\c=-3\end{cases}}}\)Thay vào phương trình (1) ta được a = 4
Nên ta có: ( x + 4)( x - 2) - 7 = (x + 5)( x - 3)
Vậy ( a; b; c) \(\in\){ (-8 ; -9 ; -1 ) ; ( -8 ; -1; -9 ) ; ( 4 ; 5 ; -3) ; (4; -3 ; 5 ) }
Hok tốt................. ^-^
# kiseki no enzeru #
Phân tích đa thức P= (x^2+3x+1)^2 -1 thành tích của bốn đa thức. Từ đó hãy chứng minh rằng tích của bốn số tự nhiên liên tiếp cộng với 1 luôn là một số chính phương
Có: \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+1\right)\left(x+2\right)\left(x+3\right).\)
Ngược lại:
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)là scp
CMR: Tích của 4 số nguyên liên tiếp cộng 1 là số chính phương
Gọi 4 số tự nhiên liên tiếp là: a;a+1;a+2;a+3(a thuộc N)
Ta có: a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)=\(\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt A=\(a^2+3a\)thì \(A\left(A+2\right)+1=A^2+2A+1=\left(A+1\right)^2\)
Vậy tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Bài 1 :Chứng tỏ rằng phương trình : mx - 3 = 2m - x - 1 luôn nhận x = 2 làm nghiệm với mọi giá trị của m.
Bài 2 : Cho 2 số chính phương liên tiếp. CMR tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ.