Tìm hai số x và y, biết:
\(\frac{x}{3}=\frac{7}{5}\) và x + y = 16
Giúp với :v
Tìm hai số x và y biết rằng:
\(\frac{x}{3}=\frac{y}{5};\frac{y}{7}=\frac{z}{9}\) và \(x-y+z=82\)
Giúp với cần gấp
Ta có : x5=y4⇒x225=y216x5=y4⇒x225=y216
Áp dụng t/c dãy tỉ số bằng nhau :
x225=y216=x2−y225−16=369=4x225=y216=x2−y225−16=369=4
⇒{x2=4.25=100y2=4.16=64{x2=4.25=100y2=4.16=64
⇒{x=10;−10y=8;−8{x=10;−10y=8;−8
Vậy x=10,y=8
x=-10,y=-8
TL:
Ta có : x5=y4⇒x225=y216x5=y4⇒x225=y216
Áp dụng t/c dãy tỉ số bằng nhau :
x225=y216=x2−y225−16=369=4x225=y216=x2−y225−16=369=4
⇒
⇒
Vậy x=10,y=8
x=-10,y=-8
^HT^
suy ra cái j vậy bạn
?????
:>>>
tìm hai số x và y biết \(\frac{x}{3}=\frac{y}{5}\) và x + y = 16
C1 : x/3=y/5 =>x=3y/5
=>3y/5+y=16
<=>8y/5=16
=>y=16.5/8=10
=>x=16-10=6
C2: Ta có: x/3 = y/5 = (x+y)/(3+5) = 16/8 = 2 (tính chất dãy tỉ số bằng nhau)
Từ x/3 = 2 => x = 6.
Từ y/5 = 2 => y = 10.
x =\(\frac{40}{3}\)
y = \(\frac{8}{3}\)
vì \(\frac{x}{3}=\frac{y}{5}\) do tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}\)
thay x + y = 16 vào đẳng thức trên
ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{16}{8}=2\)
vậy x = 2 x 3 = 6 ; y = 2 x 5 = 10
Tìm hai số x và y, biết \(\frac{x}{3}=\frac{y}{5}\) và \(x+y=16\)
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.5=10\)
Vậy x = 6 và y = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2.\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{5}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=10\end{cases}}\)
ta có: \(\frac{x}{3}=\frac{y}{5}\) và x + y = 16
áp dùng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
=> x = 2 * 3 = 6
y = 2 * 5 = 10
vậy x = 6; y = 10
tìm hai số x và y biết : \(\frac{x}{3}\)= \(\frac{y}{5}\)và x+y=16
Ta có : \(\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x}{3}=3.2=6\)
\(\Rightarrow\frac{x}{5}=5.2=10\)
Vậy x = 6 và y = 10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
=>x=2.3=6
y=2.5=10
Vậy x=6 và y=10
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=10\end{cases}}\)
tìm ba số x,y,z, biết rằng:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x+y-z=10
tìm hai số x và y, biết rằng:
\(\frac{x}{2}=\frac{y}{5}\) và xy=10
(có lời giải nha, mong các bạn giúp đỡ nhìu ^-^)
Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)
Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Do đó:\(x=2.8=16\)
\(y=12.2=24\)
\(z=15.2=30\)
Vậy \(x=16\);\(y=24\);\(z=30\)
Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)
\(\Rightarrow\)\(x=2.k\);\(y=5.k\)
Vì \(x.y=10\)nên \(2k.5k=10\)
\(\Rightarrow\)\(10.k^2=10\)
\(\Rightarrow\)\(k^2=1\)
\(\Rightarrow\)\(k=1\)hoặc\(k=-1\)
+) Với \(k=1\)thì \(x=2\);\(y=5\)
+) Với \(k=-1\)thì \(x=-2\);\(y=-5\)
Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được :
\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)
Với \(y=5\Rightarrow x=\frac{2.5}{5}=2\)
Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)
1, Tìm các số tự nhiên x,y biết \(\frac{3+x}{5+y}=\frac{3}{5}\) và \(x+y=16\)
2, Hỏi như 1 biết \(\frac{x-7}{y-6}=\frac{7}{6}\) và \(x-y=\left(-4\right)\)
1. Ta có: \(\frac{3+x}{5+y}=\frac{3}{5}\Leftrightarrow\hept{\begin{cases}3+x=3k\\5+y=5k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\left(k-1\right)\\y=5\left(k-1\right)\end{cases}}\)
\(\Rightarrow x+y=3\left(k-1\right)+5\left(k-1\right)=\left(3+5\right)\left(k-1\right)\)
\(\Rightarrow8\left(k-1\right)=16\)
\(\Leftrightarrow k-1=16\div8\)
\(\Leftrightarrow k-1=2\)
\(\Leftrightarrow k=2+1\)
\(\Leftrightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}x=3.3-3=6\\y=5.3-5=10\end{cases}}\)
Vậy x = 6 và y = 10
Với \(\frac{3+x}{5+y}=\frac{3}{5}\Leftrightarrow x=3a;y=5a\left(1\right)\)
Ta có :
\(x+y=3a+5a\)
hay \(16=3a+5a\)
\(\Leftrightarrow16=8a\)
\(\Leftrightarrow a=2\left(2\right)\)
Thay ( 2 ) vào ( 1 ) . Ta có :
\(x=3.2;y=5.2\)
\(\Leftrightarrow x=6;y=10\)
Vậy x = 6; y=10
2. Ta có: \(\frac{x-7}{y-6}=\frac{7}{6}\Leftrightarrow\hept{\begin{cases}x-7=7k\\y-6=6k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\left(k+1\right)\\y=6\left(k+1\right)\end{cases}}\)
\(\Rightarrow x-y=7\left(k+1\right)-6\left(k+1\right)=\left(7-6\right)\left(k+1\right)\)
\(\Rightarrow k+1=-4\)
\(\Leftrightarrow k=-4-1\)
\(\Leftrightarrow k=-5\)
\(\Rightarrow\hept{\begin{cases}x=7.\left(-5\right)+7=-28\\y=6.\left(-5\right)+6=-24\end{cases}}\)
Vậy x = -28, y = -24
Tìm hai số x và y biết:
\(\frac{x}{y}=\frac{15}{7}vàx-2y=16\)
Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
Tìm hai số x và y, biết: \(\frac{x}{3}\)= \(\frac{y}{5}\) và x + y = 16
Ta sẽ giải bài toán này theo chương trình lớp 7:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{x+y}{3+5}\)=\(\frac{16}{8}\)=2
Do đó:\(\frac{x}{3}\)=2 \(\Rightarrow\) x = 6
\(\frac{y}{5}\)=2 \(\Rightarrow\) y = 10
Vậy x = 6 ; y = 10
1.Tìm x,y,z, biết :\(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\) và x-y-z = 78
2.Tìm x trong các tỉ lệ thức sau:
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
d) \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
3. Tìm các số x,y,z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x - 3y - 4z = 62
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x - y + z = -15
c) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x + 5y + 2z = 100
d) 5x = 8y = 20z và x - y - z = 3
Giúp với ạ, đang cần gấp