Khi chia số a cho 18 ta được số dư là 6. Hỏi:
a) Số a có chia hết cho 6 không? (CHỨNG MINH)
b) Số a có chia hết cho 9 không? (CHỨNG MINH)
1) Khi chia số tự nhiên a cho 96, được số dư là 24. Hỏi số a có chia hết cho 6. cho 18 không ?
2) Cho số tự nhiên không chia hết cho 5 và khi chia chúng cho thì được các số dư khác nhau. Chứng minh rằng tổng chủa 5 đó chia hết cho 5
3)chứng tỏ rằng 1 số khi chia cho 60 dư 45 thì hia hết cho 15 mà không chia hết cho 30
4)Chứng minh rằng không có số tự nhiên nào chia cho 21 dư 5 còn chia 9 dư 1
5)Tìm số tự nhiên n để:
a)n+4 chia hết n
b)3n+5 chia hết cho n
c)27-4n chia hết cho n
(Các bạn giúp mình với, làm bài nào cũng được)
d)n+6 chia hết cho n+1
e)2n+3 chia hết cho n-2
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
d) Ta có: n + 6 chia hết cho n+1n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
khi chia số tự nhiên a cho 18 ta được số dư là 12 chứng tỏ rằng a chia hết cho 6, không chia hết cho 9
bài 1:
a)khi chia số tự nhiên a cho 16 ta được số dư là 6. Hỏi số a có chia hết cho 2 không?Có chia hết cho 4 không?
b)khi chia số tự nhiên b cho 36 ta được số dư là 24. Hỏi số b có chia hết cho 3 không?Có chia hết cho 4 không?Có chia hết cho 18 không?
a) a chia hết cho 2 nhưng ko chia hết cho 4
b) b chia hết cho 3,4 nhưng ko chia hết cho 18
bài 1:
a)khi chia số tự nhiên a cho 16 ta được số dư là 6. Hỏi số a có chia hết cho 2 không?Có chia hết cho 4 không?
b)khi chia số tự nhiên b cho 36 ta được số dư là 24. Hỏi số b có chia hết cho 3 không?Có chia hết cho 4 không?Có chia hết cho 18 không?
a) Chia hết cho 2
ko chia hết cho 4
b)
Chia hết cho 3, 4, 18
Khi chia số tự nhiên a cho 18 ta được số dư là 12. Chứng tỏ rằng a chia hết cho 6; a không chia hết cho 9
a chia 18 dư 12 => a = 18k+12. Ta có:
18k chia hết cho 6 (Vì 18 chia hết cho 6)
12 chia hết cho 6
=> 18k+12 chia hết cho 6
=> a chia hết cho 6(đpcm)
18k chia hết cho 9 (Vì 18 chia hết cho 9)
12 chia 9 dư 3
=> 18k+12 chia 9 dư 3
=> 18k+12 không chia hết cho 9
=> a không chia hết cho 9(đpcm)
=>
Khi chia số a cho 18 ta được số dư là 6 hỏi:
a) a có chia hết cho 6 không?
b) a cs chia hết cho 9 không?
Do a chia 18 dư 6 => a = 18 x k + 6 (k thuộc Z)
a) Do 18 x k chia hết cho 6; 6 chia hết cho 6 => a chia hết cho 6
b) Do 18 x k chia hết cho 9; 6 không chia hết cho 9 => a không chia hết cho 9
Nếu bn chưa hs tập hợp Z thì có thể thay = tập hợp N
a) Do 18 x k chia hết cho 6; 6 chia hết cho 6 => a chia hết cho 6
b) Do 18 x k chia hết cho 9; 6 không chia hết cho 9 => a không chia hết cho 9
42) a) Khi chia stn a cho 9,ta được số dư là 6.Hỏi số a có chia hết cho 3 không?
b) Khi chia stn a cho 12,ta được số dư là 9.Hỏi số a có chia hết cho 3 không? có chia hết cho 6 ko?
c) số 30.31.32.33.....40+111 có chia hết cho 37 không?
46)
a) Tích của 2 stn liên tiếp là 1 số chia hết cho 2
b) Với mọi n thuộc N , chứng tỏ rằng : n.(n+3) chia hết cho 2
c) với mọi n thuộc N ,chứng tỏ rằng :n^2+n+1 khong chia het cho 2
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
Giúp mình nhoé!🥺🥺🥺Bài 9. Tích A =1.2.3.4...10 có chia hết cho 100 không ?
Bài 10. Tích B = 2.4.6.8...20 có chia hết cho 30 không?
Bài 11: Cho A =2.4.6.8.10.12- 40. Hỏi A có chia hết cho 6 ; cho 8 ; cho 20 không ? Vì sao?
Bài 12: Khi chia số tự nhiên a cho 36 ta được số dư 12 . Hỏi a có chia hết cho 4 ; cho 9 không vì sao ? Bài13:Chứng minh rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3.
Bài 14: Tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 hay không ?
Bài 15: Khi chia một số cho 255 ta được số dư là 170. Hỏi số đó có chia hết cho 85 không? Vì sao?
a) Khi chia a cho 18 số dư là 12. Hỏi a có chia hết cho 2 ; 3 ; 6 ; 9 không ? Vì sao ?
b ) Chứng minh rằng : ( 12a + 36b ) chia hết cho 12 ( với a ; b thuộc N )
c ) Cho a ; b thuộc N và 11a + 2b chia hết cho 12. Chứng minh rằng : a + 34b chia hết cho 12
Ai nhanh và đúng sẽ được 3 like nhé
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12