bài 1:viết dạng tổng quát của 3 số tự nhiên liên tiếp
bài 1 tìm x để
a= 52+64+x chia hết cho 2
b=63+54+x ko chia hết cho 9
bài 2
a viết dạng tổng quát của 4 số tự nhiên liên tiếp
b chứng tỏ tổng của 4 số tự nhiên liên tiếp ko chia hết cho 4
thách ai làm đc
1:
a: A chia hết cho 2
=>x+52+64 chia hết cho 2
=>x chia hết cho 2
=>\(x\in B\left(2\right)\)
b: B không chia hết cho 9
=>x+63+54 không chia hết cho 9
=>x+117 không chia hết cho 9
=>
\(x\notin B\left(9\right)\)
2:
a: a+1;a+2;a+3;a+4
b: a+1+a+2+a+3+a+4
=4a+10
=4a+8+2
=4(a+2)+2 không chia hết cho 4
Chứng tỏ rằng:
a,Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
b,Tổng của 5 số tự nhiên liên tiếp chia hết cho 5
c, Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
d, Tổng của 6 số tự nhiên liên tiếp không chia hết cho 6
a,b,c,d đều viết dưới dạng tổng quát
a. Gọi 3 số đó là a; a+1; a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
Tương tự câu b, c, d nha
a) Xét 3 số tự nhiên liên tiếp a; a+1 ; a +2
Nếu a chia hết cho 3 thì a=3k (k thuộc N) khi đó a+1= 3k+1, còn a+2=3k+2 là những số không chia hết cho 3
Nếu a=3k+1 thì a+1=3k+2 không chia hết cho 3 còn a+2=3k+3 chia hết cho 3
Nếu a=3k+2 thì a+2=3k+4 không chia hết cho 4, còn a+1=3k+3 chia hết cho 3
b)gói 5 số đó là
n-1;n;n+1;n+2;n+3
ta có:(n-1)+n+(n+1)+(n+2)+(n+3)=5n+5 chia hết cho 5
vậy tổng 5 số nguyên liên tiếp là bội của 5
mk đang cần gấp
Viết dạng tổng quát của số tự nhiên b chia cho 7 dư 5
viết dạng tổng quát của ba số lẻ liên tiếp
chứng minh rằng tổng của 4 số lẻ liên tiếp luôn chia hết cho 8
chứng minh rằng tổng 4 số chẵn liên tiếp không chia hết cho 8
mk sẽ tk
1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc) 2) 2k+1;2k+3 ; 2k+5 3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là: 2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của 2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm) 4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm)
a. Viết dạng tổng quát của ba số tự nhiên lẻ liên tiếp.
b. Tìm ba số tự nhiên lẻ liên tiếp biết rằng tích của hai số sau lớn hơn tích của hai số trước là 20
a, n-2;n;n+2 ( n là số tự nhiên lẻ >= 3 )
b,n(n+2)-n(n-2) = 20 <=> n(n+2-n+2)=20
<=> 4n = 20 <=> n=5
vậy 3 số đó là 3,5,7
(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1
Vậy ba số tự nhiên lẻ tiên tiếp cần tìm là 3(=2.1+1);5(=2.1+2);7(=2.1+5)
a) Tổng của ba số tự nhiên liên tiếp thì chia hết cho 3
b) Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
( Chứng minh dưới dạng tổng quát )`
a) Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2 ( \(a\in N\))
\(\Rightarrow a+\left(a+1\right)+\left(a+2\right)=3a+3\)
Mà \(3a⋮3,3⋮3\Rightarrow\left(3a+3\right)⋮3\left(\text{đ}pcm\right)\)
b) Gọi 4 số tự nhiên liên tiếp là a, a+1, a+2, a+3 ( \(a\in N\))
\(\Rightarrow a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
Mà \(4a⋮4\); 6 không chia hết cho 4 => (4a+6) không chia hết cho 4(đpcm)
TÌM 1 SỐ THỰ NHIÊN Ở GIỮA SỐ 70 VÀ 80 BIẾT RẰNG SỐ ĐÓ VỪA CÓ THỂ VIẾT DƯỚI DẠNG TỔNG CỦA HAI SỐ TỰ NHIÊN LIÊN TIẾP, VỪA VIẾT ĐƯỢC DƯỚI DẠNG TỔNG CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP.
bừng 75 đó chắc chắn luôn,kb nhé
tìm một số tự nhiên ở giữa số 70 và 80 biết rằng số đó vừa có thể viết được dưới dạng tổng của hai số tự nhiên liên tiếp, vừa viết được dưới dạng tổng của 3 số tự nhiên liên tiếp.
Tìm một số tự nhiên ở giữa số 70 và 80 biết rằng số đó vừa có thể viết được dưới dạng tổng của hai số tự nhiên liên tiếp, vừa viết được dưới dạng tổng của 3 số tự nhiên liên tiếp.
75 chắc chắn 100% luôn trong violympic lớp 5 vòng 15
nhớ tk m nhé
Tìm một số tự nhiên ở giữa số 70 và 80 biết rằng số đó vừa có thể viết được dưới dạng tổng của hai số tự nhiên liên tiếp, vừa viết được dưới dạng tổng của 3 số tự nhiên liên tiếp.
75 đó bạn mình thi violympic 300 điểm đó kick mình nha