xác định a,b sao cho x^4+ax^3+b chia hết x^2-1
Bài 1: Xác định a, b sao cho x3+ax+b chia hết cho (x+1) dư 7, chia cho (x-3) dư -5
Bài 2: Xác định a sao cho:
a) x3+ax2-4 chia hết cho x2+4x+4
b) 2x2+ax+1 chia hết cho x-3 dư 4
Xác định các hằng số a và b sao cho
a) x^4 + ax + b chia hết cho x^2 - 4
b) x^4 + ax^ + bx - 1 chia hết cho x^2 - 1
c) x^3 + ax + b chia hết cho x^2 + 2x - 2
(Chia đa thức cho đa thức)
Chỉ ý kiến của mk thôi
chưa chắc đúng
Tham khảo nhé
Xác định các số a , b sao cho
a , 10x^2 - 7x + a chia hết cho 2x -3
b, 2x^2 + ax + 1 : x -3 dư 4
c, x^4 + ax + b chia hết cho x^2 - 4
d,x^4 + ax^2 + b chia hết cho x^2 -x+1
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
xác định a, b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 + x + 1
b) ax^3 + bx^2 + 5x chia hết cho x^2 + 3x - 10
Xác định hệ số a sao cho:
a) x^3 + ax^2 - 4 chia hết cho x^2 + 4x + 4
b) ax^5 + 5x^4 - 9 chia hết cho x - 1
tìm và xác định số hiệu tỷ a,b sao cho : 3x^3+ax^2+bx+9 chia hết cho đa thức x^2-9
B) x^4+ax^33+bx-1 chia hết cho x^2-1
Xác định a b sao cho
a, ( x^4 + ax + b) chia hết cho ( x^2 - 4)
b,(x^4 + 4) chia hết cho (x^2 + ax +b)
a) Đặt \(f\left(x\right)=x^4+ax+b\text{⋮}x^2-4=\left(x+2\right)\left(x-2\right)\)
Áp dụng định lý Bê du có :
\(f\left(2\right)=f\left(-2\right)=0\)
\(\Rightarrow2^4+\left(-2\right).a+b=\left(-2\right)^4+2a+b\)
\(\Leftrightarrow a=0\)
Do đó \(\hept{\begin{cases}a=0\\b\in R\end{cases}}\)
Vậy ...
b) Mình không làm được :) Mình sẽ hỏi cô mình và trả lời cho bạn sau.
a/ Đặt \(f\left(x\right)=x^4+ax+b=\left(x-2\right)\left(x+2\right).Q\left(x\right)\)với Q(x) là đa thức thương
Suy ra : \(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=16-2a+b=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2a+b=-16\\-2a+b=-16\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=-16\end{cases}}\)
b/ Ta có \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
Vậy \(x^2+ax+b\) sẽ có một trong hai dạng : \(x^2+ax+b=x^2+2x+2\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)
hoặc \(x^2+ax+b=x^2-2x+2\Rightarrow\hept{\begin{cases}a=-2\\b=2\end{cases}}\)
Xác định a,b sao cho x^4+ax^2+b chia hết cho x^2 - x+1
Phần dư của phép chia là \(R=\left(a-1\right).x+b-a\)
Để phép chia trên là phép chia hết thì \(R=0\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-1=0\\b-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)