Co a,b là các số nguyên tố cùng nhau. CMR: tồn tại n,m thỏa mãn: a^m+b^n-1 chia hết cho ab
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Cho a,b là 2 số nguyên dương không nhỏ hơn 2 và nguyên tố cùng nhau. Nếu m,n là 2 số nguyên dương thỏa mãn: (a^n + b^m) chia hết cho
(a^m + b^n) thì ta có m chia hết cho n.
Trình bày chi tiết và giải nhanh lên nhé
CMR nếu m và n là nguyên tố cùng nhau thì tồn tại số k để m^k1chia hết cho n
Bài 1: cho a b c d là các số nguyên dương chẵn thỏa mãn
a+b=c+d và ab-cd=-4.cmr abc chia hết cho 48
bài 2 : cmr ko tồn tại 5 số nguyên dương phân biệt sao cho tổng của 3 số bát kỳ là 1 số nguyên tố
bài 3: tim a thuộc Z+ để 2016^2017 + 2018^2019 chia hết cho (a^2 +a)(2+a)`
bài 4 tìm n thuộc n sao cho dãy n+9;2n+9;3n+9:..... ko có số chính phương.
(giải nhanh giúp mình trong tối nay nha mai mình đi học rồi rồi mình tích cho :) anigato)
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
a) Cho a, b ∈ N. Chứng minh nếu (5a + 3b) và (13a + 8b) cùng chia hết cho 2018 thì a và
b cũng chia hết cho 2018.
b) Cho a, b ∈ N* thỏa mãn M = (9a + 11b).(5a + 11a) ⋮ 19. Chứng minh M ⋮ 361.
Bài 3: Cho p, q là các số nguyên tố lớn hơn 5. Chứng minh p4 + 2019.q4 ⋮ 20.
Bài 4: Tìm số tự nhiên a nhỏ nhất sao cho (a + 1) chia hết cho 2, a chia hết cho tích hai số
nguyên tố liên tiếp và tích 2023a là số chính phương
Bài 3: p,q là các số nguyên tố lớn hơn 5
=>p,q là các số lẻ
=>p=2a+1; q=2b+1
\(p^4-q^4\)
\(=\left(2a+1\right)^4-\left(2b+1\right)^4\)
\(=\left\lbrack\left(2a+1\right)^2-\left(2b+1\right)^2\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)
\(=\left\lbrack4a^2+4a-4b^2-4b\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)
\(=4\left(a^2-b^2+a-b\right)\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\) ⋮4
=>\(p^4-q^4+2020q^4\) ⋮4
=>\(p^4+2019q^4\) ⋮4(2)
p,q là các số nguyên tố lớn hơn 5
mà p,q là các số lẻ
nên p,q chỉ có thể có tận cùng là 1;3;7;9
=>\(p^4;q^4\) đều có tận cùng là 1
=>\(p^4-q^4\) ⋮10
=>\(p^4-q^4+2020q^4\) ⋮10
=>\(p^4+2019q^4\) ⋮10(1)
Từ (1),(2) suy ra \(p^4+2019q^4\) ∈BC(4;10)
=>\(p^4+2019q^4\) ⋮20
Bài 2:
a: 5a+3b⋮2018
=>13(5a+3b)⋮2018
=>65a+39b⋮2018
13a+8b⋮2018
=>5(13a+8b)⋮2018
=>65a+40b⋮2018
mà 65a+39b⋮2018
nên 65a+40b-65a-39b⋮2018
=>b⋮2018
5a+3b⋮2018
=>8(5a+3b)⋮2018
=>40a+24b⋮2018
13a+8b⋮2018
=>3(13a+8b)⋮2018
=>39a+24b⋮2018
mà 40a+24b⋮2018
nên 40a+24b-39a-24b⋮2018
=>a⋮2018
b:
Sửa đề: M=(9a+11b)(5b+11a)
Vì 19 là số nguyên tố
nên một trong hai số 9a+11b hoặc 5b+11a sẽ chia hết cho 19
TH1: 9a+11b⋮19
=>3(9a+11b)⋮19
=>27a+33b⋮19(2)
Ta có: 3(9a+11b)+5b+11a
=27a+33b+5b+11a
=38a+38b=38(a+b)⋮19(1)
Từ (1),(2) suy ra 5b+11a⋮19
=>(9a+11b)(5b+11a)⋮19*19
=>M⋮361
TH2: 11a+5b⋮19
=>38a+38b-11a-5b⋮19
=>27a+33b⋮19
=>3(9a+11b)⋮19
=>9a+11b⋮19
=>(9a+11b)(11a+5b)⋮19*19
=>M⋮361
vậy: M⋮361
Cho 2 STN m và n là 2 số nguyên tố cùng nhau và thỏa mãn (m^2 + n^2) chia hết cho m.n. Chứng tỏ rằng m = n = 1.
cmr không tồn tại các số nguyên dương m,n,p với p nguyên tố thỏa mãn m2019+n2019=p2018
1,cho a và b là hai số tự nhiên nguyê tố cùng nhau với 3 và a+b chia hết cho 3. chứng minh rằng xa +xb+1 chia hết cho x2+x+1
2,cho f(x) là đa thức bậc lớn hơn 1 có các hệ số nguyên, m và n là hai số nguyên tố cùng nhau, chứng minh rằng
f( m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
ai làm hộ mik đi... nhanh dùm với các chế