Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Tố Quyên
Xem chi tiết
Rau
21 tháng 6 2017 lúc 9:33

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

Ben 10
23 tháng 8 2017 lúc 22:01

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

Nguyễn Anh Tiên
Xem chi tiết
What Coast
Xem chi tiết
Tăng Vĩnh Hà
Xem chi tiết
Bùi Khắc Tuấn Khải
Xem chi tiết
Đức Anh nguyễn
Xem chi tiết

Bài 3: p,q là các số nguyên tố lớn hơn 5

=>p,q là các số lẻ

=>p=2a+1; q=2b+1

\(p^4-q^4\)

\(=\left(2a+1\right)^4-\left(2b+1\right)^4\)

\(=\left\lbrack\left(2a+1\right)^2-\left(2b+1\right)^2\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)

\(=\left\lbrack4a^2+4a-4b^2-4b\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)

\(=4\left(a^2-b^2+a-b\right)\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\) ⋮4

=>\(p^4-q^4+2020q^4\) ⋮4

=>\(p^4+2019q^4\) ⋮4(2)

p,q là các số nguyên tố lớn hơn 5

mà p,q là các số lẻ

nên p,q chỉ có thể có tận cùng là 1;3;7;9

=>\(p^4;q^4\) đều có tận cùng là 1

=>\(p^4-q^4\) ⋮10

=>\(p^4-q^4+2020q^4\) ⋮10

=>\(p^4+2019q^4\) ⋮10(1)

Từ (1),(2) suy ra \(p^4+2019q^4\) ∈BC(4;10)

=>\(p^4+2019q^4\) ⋮20


Bài 2:

a: 5a+3b⋮2018

=>13(5a+3b)⋮2018

=>65a+39b⋮2018

13a+8b⋮2018

=>5(13a+8b)⋮2018

=>65a+40b⋮2018

mà 65a+39b⋮2018

nên 65a+40b-65a-39b⋮2018

=>b⋮2018

5a+3b⋮2018

=>8(5a+3b)⋮2018

=>40a+24b⋮2018

13a+8b⋮2018

=>3(13a+8b)⋮2018

=>39a+24b⋮2018

mà 40a+24b⋮2018

nên 40a+24b-39a-24b⋮2018

=>a⋮2018

b:

Sửa đề: M=(9a+11b)(5b+11a)

Vì 19 là số nguyên tố

nên một trong hai số 9a+11b hoặc 5b+11a sẽ chia hết cho 19

TH1: 9a+11b⋮19

=>3(9a+11b)⋮19

=>27a+33b⋮19(2)

Ta có: 3(9a+11b)+5b+11a

=27a+33b+5b+11a

=38a+38b=38(a+b)⋮19(1)

Từ (1),(2) suy ra 5b+11a⋮19

=>(9a+11b)(5b+11a)⋮19*19

=>M⋮361

TH2: 11a+5b⋮19

=>38a+38b-11a-5b⋮19

=>27a+33b⋮19

=>3(9a+11b)⋮19

=>9a+11b⋮19

=>(9a+11b)(11a+5b)⋮19*19

=>M⋮361

vậy: M⋮361


Nguyễn Đăng Khoa
Xem chi tiết
shunnokeshi
Xem chi tiết
Nisciee
Xem chi tiết