TÌM X,Y,Z
(2x-1)^2008+(y-2/5)+I x+y+zI =0
(2x-1)^2008+(y-2/5)^2008+Ix+y-zI=0
tìm x, y, z
vì ( 2x -1)2008>= 0 ( y-2/5)2008 >= 0 ( vì 2008 chẵn)
/ x +y-z/ >=0
=> (2x-1)2008+(y-2/5)2008 +/x+y-z/ >= 0
dấu = xảy ra <=> đồng thời (2x-1)=0, (y-2/5) = 0 , /x+y-z/=0
<=> x=1/2 , y= 2/5 và z = -9/10
tìm x,y,z biết: (2x-1)^2008+(y-2/5)^2008+| x+y+z|=0
Theo bài ra ta có
(2*-1)^2008>=0 với mọi x
(y-2/5)>=0 với mọi y
|x+y-z|>=0 với mọi x; y; z
=>(3 cái trên) >=0 với mọi x y z
Với (đề bài)
<=>2x-1 mũ 2008=0
y-2/5=0
x+y-z=0
=>x=1/2;y=2/5;z=x+y=1/2+2/5=9/10
R kết luận
>= là lớn hơn hoặc bg
tìm x,y,z thuộc N,biết :
a)A=(3x-5)^2006+(y^2-1)^2008+(x-z)^2100=0
b)B=(2x-1)^2008+(y-2:5)^2008+/x+y-z/=0
Tìm x,y,z thỏa mãn :(2x-1)^2008+(y-2/5)^2008+|x+y-z| =0
ta có giá trị tuyệt đối luôn lớn hơn 0 và mũ chẵn cũng vậy
mà VT=VP=0 nên
2x-1=0 và y-2/5=0; x+y=z
nên: x=1/2;y=2/5; z=9/10
Tìm x, y, z biết: (2x-1)^2008+(y-2/5)^2008+|x+y-z|=0
Tìm x , y , z biết
a) 2009 - I x - 2009 I = x
b ) ( 2x - 1 )2008 + ( y - 2/5 )2008 + I x + y +z I = 0
a)
2009-|x-2009|=x
=> 2009-x=|x-2009|
=> 2009-x=|2009-x|
=> 2009-x=2009-x
vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài
b)
(2x-1)2008+(y-2/5)2008 +|x+y+z|=0
ta có: (2x-1)2008 luôn lớn hơn hoặc bằng 0
(y-2/5)2008 luôn lớn hơn hoặc bằng 0
|x+y+z| luôn lớn hơn hoặc bằng 0
dấu "=" xảy ra khi
2x-1=y-2/5=x+y+z=0
+2x-1=0=> 2x=1=> x=1/2
+y-2/5=0=> y=2/5
+x+y+z=0=> 1/2+2/5+z=0
=> z=-9/10
Tìm x,y thuộc Z:
a, (x-3)^2+(y+2)^2=0
b,2x+2^x+3=136
c,42-3./y-3/=4.(2042-x)^4
d,/x+5/+(3y-6)^2010=0
e,(2x-4)^2008+(y-4)^2008+/x+y+z/=0
g,(3x-6)^2006+(y^2-1)^2008+(x-z)^2100=0
h,8.2^3x.7^y=56^2x.5^x-1
i, x^3-y^3-z^3=3xyz và x^2=2.(y+z) (x,y,z thuộc N*)
Tìm x; y ; z biết : (2x-1)^2008 + (y-2/5)^2008 + I x+y-z I = o
Ta có \(\left(2x-1\right)^{2008}\)\(\ge0\)với mọi x
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)với mọi y
|x+y-z| \(\ge\)0
Suy ra 2x-1=0 nên x=\(\frac{1}{2}\)
y-\(\frac{2}{5}\)=0 nên y=\(\frac{2}{5}\)
và x+y-z=0 hay \(\frac{1}{2}+\frac{2}{5}\)-z=0 suy ra z=\(\frac{9}{10}\)
Tìm x; y; z :
a) \(2009-\left|x-2009\right|=x\)
b) \(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
a: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
b: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10