Cho tứ diện ABCD. Gọi M,N,P,Q lần lượt là trung điểm các đoạn AB,BC,CD,AM. CMR: PQ // (MND)
Cho tứ giác ABCD. Các điểm M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Nối MN, PQ, PQ, QM. Hãy chứng tỏ diện tích tứ giác MNPQ bằng ½ diện tích tứ giác ABCD.
Cho tứ giác lồi ABCD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của AB , CD, AD, BD, AC. BC CMR: MN, PQ, EF đồng quy.
Ta có : Tứ giác MPNQ là hình bình hành
MN và PQ cắt nhau tại trung điểm I của mỗi đường
Ta có : Tứ giác EPFQ là hình bình hành
EF đi qua I
Vậy EF , MN và PQ đồng quy
Cho tứ diện ABCD. Gọi M, N, P, Q, R và S lần lượt là trung điểm của AB, CD, BC, AD, AC và BD. Chứng minh rằng tứ giác MPNQ là hình bình hành. Từ đó suy ra 3 đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn ?
Cho tứ diện ABCD. Gọi M, N, P, Q, R và S lần lượt trung điểm của AB, CD, BC, AD, AC và BD. Chứng minh rằng tứ giác MNPQ là hình bình hành. Từ đó suy ra ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.
Trong tam giác ABC ta có:
MP // AC và MP = AC/2.
Trong tam giác ACD ta có:
QN // AC và QN = AC/2.
Từ đó suy ra {MP // QN}
⇒ Tứ giác MNPQ là hình bình hành.
Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.
Tương tự: PR // QS và PR = QS = AB/2. Do đó tứ giác PQRS là hình bình hành.
Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS
Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn AC, BD, BC, AD và có MN = PQ. Chứng minh rằng \(AB\perp CD\) ?
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn AC, BD, AD và có MN = PQ . Chứng minh rằng AB ⊥ CD.
Cho tứ diện ABCD. Trên các cạnh AD và BC lần lượt lấy M, N sao cho AM = 3MD; BN = 3NC. Gọi P, Q lần lượt là trung điểm của AD và BC. Chứng minh các vectơ M N → , D C → , P Q → đồng phẳng.
+) Do AM = 3MD; BN = 3NC suy ra:
+) Do P và Q lần lượt là trung điểm của AD và BC nên :
- Từ (1) và (2) suy ra:
- Suy ra: M là trung điểm của DP; N là trung điểm CQ.
+) Ta có:
Cho tứ giác ABCD, các điểm M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD,DA ; nối MN,NP,PQ,QM.Hãy chứng minh diện tích tứ giác MNPQ bằng 1/2 diện tích tứ giác ABCD
Bài 5. Cho tứ giác ABCD không là hình bình hành. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các đoạn thẳng AB, CD, AD, BC, AC, BD. Chứng minh rằng MN, PQ, RS đồng quy