Cho P/số A \(\frac{6n}{3n+2}\)
Tìm số n để A có giá trị nguyên
Tìm giá trị nhỏ nhất của B
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT . tìm giá trị nhỏ nhất đó
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho B=\(\frac{6n-5}{3n+1}\)
a)Tìm các số ngyên N để A có giá trị nguyên
b)Tìm n để B đạt giá trị nhỏ nhất
\(B=\frac{6n-5}{3n+1}\inℤ\)
=> 6n - 5 ⋮ 3n + 1
=> 6n + 2 - 7 ⋮ 3n + 1
=> 3(3n + 1) - 7 ⋮ 3n + 1
=> 7 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(7)
=> 3n + 1 thuộc {-1; 1; -7; 7}
=> 3n thuộc {-2; 0; -8; 6}
=> n thuộc {0; 2} vì n thuộc Z
a) Để \(B\inℤ\)
\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)
\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)
\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)
Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)
nên \(-7⋮3n+1\)
\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)
\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(3n+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(0\) | \(-\frac{2}{3}\) | \(2\) | \(-\frac{8}{3}\) |
Vậy \(n\in\left\{0;2\right\}\)
Để \(B\in Z\)
\(6n-5⋮3n+1\)
\(6n+2-7⋮3n+1\)
\(3\left(3n+1\right)-7⋮3n+1\)
Mà \(3\left(3n+1\right)⋮3n+1\)
\(\Rightarrow-7⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(-7\right)=\left\{\mp1;\mp7\right\}\)
Lập bảng xét giá trị là xong
Cho phân số 6n-1/3n+2 (n E Z)
a)Tìm n để A có giá trị nguyên
b)Tìm n để A có giá trị nhỏ nhất
a) \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\inℤ\)mà \(n\inℤ\)nên \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
mà \(n\inℤ\)suy ra \(n\in\left\{-1,1\right\}\).
b) \(A=2-\frac{5}{3n+2}\)có giá trị nhỏ nhất suy ra \(\frac{5}{3n+2}\)có giá trị lớn nhất suy ra \(3n+2\)có giá trị dương nhỏ nhất mà \(n\inℤ\)nên \(3n+2\)dương nhỏ nhất bằng \(2\)tại \(n=0\).
\(minA=2-\frac{5}{2}=-0,5\).
Cho phân số M=\(\frac{6n-1}{3n+2}\) n thuộc Z
a,Tìm số nguyên n để M có giá trị nguyên
b,tìm số tự nhiên n để M có giá trị nhỏ nhất.
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
Cho số A= 6n-1 / 3n+2
a) Tìm n thuộc Z để A có giá trị Nguyên
b) Tìm n Thuộc Z để A có Giá trị Nhỏ Nhất
\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 = \({\pm 1 , \pm (6n-1)}\)
.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)
.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )
.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )
.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )
Kết luận vậy n = { -1,1 }
Cho phân số M = 6n-1/3n-2
a, Tìm n để M có giá trị là số nguyên tố
b, Tìm n để Mcó giá trị nhỏ nhất
cho A= 6n+2022 /3n+5
a, tìm n để A có giá trị là số nguyên
b,tìm n để A đạt giá trị lớn nhất
c,tìm n để A đạt giá trị nhỏ nhất
cho phân số A = 6n-1/3n+2
a) tìm n thuộc Z để A có giá trị nguyên.
b) tìm n thuộc Z để A có giá trị nhỏ nhất.
Cho phân số M =6n-1/3n+2.
a,Tìm n để M có giá trị nguyên.
b, Tìm n để M có giá trị nhỏ nhất.
để m có giá trị nguyên thì
6n-1/3n+2
6n-1-6n-4/3n+2
-5/3n+2
3n+2c[1;5;-1;-5]
3n{-1;3;-3;-7}
nếu 3n=-1\(\Rightarrow\)không tìm được n thỏa mãn
nếu..................n=1
nếu..................n=-1
nếu..................không tìm được n thỏa mãn