Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nàng tiên cá
Xem chi tiết
ST
6 tháng 7 2018 lúc 9:43

Gọi 2 số chính phương là a2,b2

Ta có: n=a2+b2

=>\(2n=a^2+b^2+a^2+b^2=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\) (đpcm)

Hoàng Ninh
6 tháng 7 2018 lúc 13:00

Theo lý thuyết: số chính phương là số có mũ bằng 2

Gọi 2 số chính phương cần tìm là: a2 ; b2

Ta có:

n = a+ b2

\(\Rightarrow\)2n = (a2+b2) . 2 = a2 + b2 + a2 + b2 = a2 + 2ab + b2 + a- 2ab + b2 = ( a2 + b2 ) + ( a2 + b)

Vậy nếu n là tổng của 2 số chính phương thì 2n cũng là tổng của 2 số chính phương

Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Mạnh Trung
Xem chi tiết
Phương Anh
Xem chi tiết
Minh Hiếu
13 tháng 10 2021 lúc 15:33

Giả sử \(2n=a^2+b^2\)(a,b∈N).

⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)

Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.

⇒ \(\dfrac{a+b}{2}\)  và \(\dfrac{a-b}{2}\) đều là số nguyên

phan nguyen
Xem chi tiết
Đặng Quốc Bảo
4 tháng 8 2017 lúc 21:13

a) Gọi n = a^2 + b^2

Suy ra 2n = 2a^2 +2b^2 = a^2 + 2ab + b^2 + a^2 -2ab +b^2 

                                       = (a + b)^2 + (a-b)^2

b)  Mình chưa suy nghĩ ra

c) n^2 = (a^2 +b^2 )^2 = a^4 +2a^2.b^2 + b^4 = a^4 - 2a^2.b^2 + b^4 +4a^2.b^2

                                                                          = (a^2 - b^2)^2 + (2.a.b)^2

d)m.n = (a^2 + b^2)(c^2 + d^2) = a^2.c^2 + a^2.d^2 + b^2.c^2 + b^2.d^2

                                                  = (a^2.c^2 + 2a^2.b^2.c^2.d^2 + b^2.d^2) + (a^2.d^2 - 2a^2.b^2.c^2.d^2 + b^2.c^2)

                                                  = (ac + bd)^2 + (ad + bc)^2

Đỗ Tiến Dũng
5 tháng 10 2017 lúc 11:26

Chọn câu A  vì có 16 lp hc, vậy 16 đv điều tra. ứng vs mỗi đv đk điều tra sẽ có 1 giá trị, dó đó sẽ có 16 giá trị của dấu hiệu.

k cho mk nha mk tl đầu tiên và đúng lém ai ik quá thấy đúng k nốt cho mk nha mk c ơn

Nguyễn Quang Huy
Xem chi tiết
Phạm Hữu Nam chuyên Đại...
Xem chi tiết
bảo khánh
Xem chi tiết
Phượng Hoàng Lửa
Xem chi tiết
Dương Helena
13 tháng 12 2015 lúc 20:18

Đặt 2n=a2+b2⇒a2+b2 ⋮ 2

Do đó a và b cùng tính chẵn lẻ.

Ta có: n=a22+b22=(a24+2 . a2 . b2+b24)+(a24+2 . a2 . b2+b24)=(a+b2)2+(a−b2)2

Vì a và b cùng tính chẵn lẻ nên a+b ⋮ 2 và a−b ⋮ 2

Do đó (a+b2)2+(a−b2)2∈Z

Từ đó có điều phải chứng minh.

Tick nha