Hãy tính:
\(\frac{8^2\cdot4^5}{2^{20}}\)
Tính: \(\frac{8^{20}\cdot4^{20}\cdot3^7}{4^{25}\cdot64^5\cdot9^2}\)
\(=>\frac{2^{60}.2^{40}.3^7}{2^{50}.2^{30}.3^4}\)
\(=>\frac{2^{100}.3^7}{2^{80}.3^4}\)
\(=>\frac{2^{20}.3^3}{1}\)
Rút gọn
\(\frac{8^2\cdot4^5}{2^{20}}\)
\(\frac{8^2.4^5}{2^{20}}=\frac{2^6.2^{10}}{2^{20}}=\frac{2^{16}}{2^{20}}=\frac{1}{2^4}=\frac{1}{16}\)
\(\frac{8^2.4^5}{2^{20}}=\frac{\left(2^3\right)^2.\left(2^2\right)^5}{2^{20}}=\frac{2^6.2^{10}}{2^{20}}=\frac{2^{16}}{2^{20}}=\frac{1}{2^4}=\frac{1}{16}\)
Cảm ơn bạn nhiều
bạn có thể giải giúp mình một vài bào nữa k ?
\(\frac{5^5\cdot20^3-5^4\cdot20^3+5^7\cdot4^5}{\left(20+5\right)^3\cdot4^5}\)hãy tính giá trị của biểu thức trên:
\(=\frac{5^5\cdot\left(4.5\right)^3-5^4\cdot\left(4.5\right)^3+5^7\cdot4^5}{\left(5^3\right)^3\cdot4^5}=\frac{5^8.4^3-5^7.4^3+5^7.4^5}{5^9.4^5}=\frac{5^7.4^3.\left(5-1+4^2\right)}{5^7.4^3.\left(5^2.4^2\right)}\)
= \(\frac{4+4^2}{5^2.4^2}=\frac{4.5}{5^2.4^2}=\frac{1}{4.5}=\frac{1}{20}\)
tính\(\frac{9^{4^{ }}\cdot27^5\cdot3^6\cdot4^4}{3^8\cdot8^{14}\cdot24\cdot3\cdot8^2}\)
\(\frac{5\cdot415\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot2^{19}-7\cdot2^{19}.27^6}\)
\(\frac{8^5\cdot24^4\cdot72^2}{16^{12}\cdot125^2\cdot94^4}\)
Câu 1 : \(1,321338308x10^{-4}\)
Câu 2 : \(1316,572106\)
Câu 3 : \(1,641302619x10^{-13}\)
Ủng hộ nhé,tớ đang âm.
Không quy đồng hãy tính hợp lý :B=\(\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
\(B=\frac{5}{2}+\left(\frac{4}{1.11}+\frac{3}{11.2}\right)+\left(\frac{1}{2.15}+\frac{13}{15.4}\right)\)
\(B=\frac{5}{2}+\frac{1}{11}.\left(4+\frac{3}{2}\right)+\frac{1}{15}\left(\frac{1}{2}+\frac{13}{4}\right)=\frac{5}{2}+\frac{1}{11}.\frac{11}{2}+\frac{1}{15}.\frac{15}{4}\)
=> \(B=\frac{5}{2}+\frac{1}{2}+\frac{1}{4}=\frac{10}{4}+\frac{2}{4}+\frac{1}{4}=\frac{13}{4}\)
Ta có
1/7.B = 5/2.7 + 4/7.11 + 3/11.14 + 1/14.15 + 13/15.28
1/7.B = 1/2 - 1/7 + 1/7 - 1/11 + 1/11 - 1/14 + 1/14 - 1/15 + 1/15 - 1/28
1/7.B = 1/2 - 1/28
1/7.B = 14/28 - 1/28
1/7.B = 13/28
B = 13/28 : 1/7
B = 13/28 . 7
B = 13/4
Ta có :
\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(B=7\left(\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\right)\)
\(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)
\(=7.\frac{13}{28}\)
\(=\frac{13}{4}\)
b\(^{\frac{2^{10\cdot13+2^{10}\cdot65}}{2^8\cdot104}}\)
c) \(\frac{5\cdot4^{15}-99-4\cdot3^{20}\cdot89}{5\cdot29\cdot6^{19}\cdot7\cdot2^{29}\cdot27^6}\)
b\(^{\frac{2^{10\cdot13+2^{10}\cdot65}}{2^8\cdot104}}\)
c) \(\frac{5\cdot4^{15}-99-4\cdot3^{20}\cdot89}{5\cdot29\cdot6^{19}\cdot7\cdot2^{29}\cdot27^6}\)
\(S=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}+\frac{1}{9\cdot9}\)
HÃY CHỨNG MINH \(\frac{2}{5}< S< \frac{7}{8}\)
Bài làm:
Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)
Cái còn lại tự CM
\(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}+\frac{1}{9\cdot9}\)
HÃY CHỨNG MINH :
\(\frac{2}{5}< A< \frac{8}{9}\)
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)
Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)
Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)
Bài làm :
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>\frac{1}{2}-\frac{1}{10}\)
\(A>\frac{2}{5}\left(1\right)\)
Ta cũng có :
\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)
\(A< 1-\frac{1}{9}\)
\(A< \frac{8}{9}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!